Zihan Xue
2024
Argument-Aware Approach To Event Linking
I-Hung Hsu
|
Zihan Xue
|
Nilay Pochhi
|
Sahil Bansal
|
Prem Natarajan
|
Jayanth Srinivasa
|
Nanyun Peng
Findings of the Association for Computational Linguistics: ACL 2024
Event linking connects event mentions in text with relevant nodes in a knowledge base (KB). Prior research in event linking has mainly borrowed methods from entity linking, overlooking the distinct features of events. Compared to the extensively explored entity linking task, events have more complex structures and can be more effectively distinguished by examining their associated arguments. Moreover, the information-rich nature of events leads to the scarcity of event KBs. This emphasizes the need for event linking models to identify and classify event mentions not in the KB as “out-of-KB,” an area that has received limited attention. In this work, we tackle these challenges by introducing an argument-aware approach. First, we improve event linking models by augmenting input text with tagged event argument information, facilitating the recognition of key information about event mentions. Subsequently, to help the model handle “out-of-KB” scenarios, we synthesize out-of-KB training examples from in-KB instances through controlled manipulation of event arguments. Our experiment across two test datasets showed significant enhancements in both in-KB and out-of-KB scenarios, with a notable 22% improvement in out-of-KB evaluations.
LegalDiscourse: Interpreting When Laws Apply and To Whom
Alexander Spangher
|
Zihan Xue
|
Te-Lin Wu
|
Mark Hansen
|
Jonathan May
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)
While legal AI has made strides in recent years, it still struggles with basic legal concepts: _when_ does a law apply? _Who_ does it applies to? _What_ does it do? We take a _discourse_ approach to addressing these problems and introduce a novel taxonomy for span-and-relation parsing of legal texts. We create a dataset, _LegalDiscourse_ of 602 state-level law paragraphs consisting of 3,715 discourse spans and 1,671 relations. Our trained annotators have an agreement-rate 𝜅>.8, yet few-shot GPT3.5 performs poorly at span identification and relation classification. Although fine-tuning improves performance, GPT3.5 still lags far below human level. We demonstrate the usefulness of our schema by creating a web application with journalists. We collect over 100,000 laws for 52 U.S. states and territories using 20 scrapers we built, and apply our trained models to 6,000 laws using U.S. Census population numbers. We describe two journalistic outputs stemming from this application: (1) an investigation into the increase in liquor licenses following population growth and (2) a decrease in applicable laws under different under-count projections.
Search
Co-authors
- I-Hung Hsu 1
- Nilay Pochhi 1
- Sahil Bansal 1
- Prem Natarajan 1
- Jayanth Srinivasa 1
- show all...