Ziquan Liu
2025
Cultural Alignment in Large Language Models: An Explanatory Analysis Based on Hofstede’s Cultural Dimensions
Reem Masoud
|
Ziquan Liu
|
Martin Ferianc
|
Philip C. Treleaven
|
Miguel Rodrigues Rodrigues
Proceedings of the 31st International Conference on Computational Linguistics
The deployment of large language models (LLMs) raises concerns regarding their cultural misalignment and potential ramifications on individuals and societies with diverse cultural backgrounds. While the discourse has focused mainly on political and social biases, our research proposes a Cultural Alignment Test (Hoftede’s CAT) to quantify cultural alignment using Hofstede’s cultural dimension framework, which offers an explanatory cross-cultural comparison through the latent variable analysis. We apply our approach to quantitatively evaluate LLMs—namely Llama 2, GPT-3.5, and GPT-4—against the cultural dimensions of regions like the United States, China, and Arab countries, using different prompting styles and exploring the effects of language-specific fine-tuning on the models’ behavioural tendencies and cultural values. Our results quantify the cultural alignment of LLMs and reveal the difference between LLMs in explanatory cultural dimensions. Our study demonstrates that while all LLMs struggle to grasp cultural values, GPT-4 shows a unique capability to adapt to cultural nuances, particularly in Chinese settings. However, it faces challenges with American and Arab cultures. The research also highlights that fine-tuning LLama 2 models with different languages changes their responses to cultural questions, emphasizing the need for culturally diverse development in AI for worldwide acceptance and ethical use. For more details or to contribute to this research, visit our GitHub page https://github.com/reemim/Hofstedes_CAT
Get Confused Cautiously: Textual Sequence Memorization Erasure with Selective Entropy Maximization
Zhaohan Zhang
|
Ziquan Liu
|
Ioannis Patras
Proceedings of the 31st International Conference on Computational Linguistics
Large Language Models (LLMs) have been found to memorize and recite some of the textual sequences from their training set verbatim, raising broad concerns about privacy and copyright issues. This Textual Sequence Memorization (TSM) phenomenon leads to a high demand to regulate LLM output to prevent generating certain memorized text that a user wants to be forgotten. However, our empirical study reveals that existing methods for TSM erasure fail to unlearn large numbers of memorized samples without substantially jeopardizing the model utility. To achieve a better trade-off between the effectiveness of TSM erasure and model utility in LLMs, our paper proposes a new method, named Entropy Maximization with Selective Optimization (EMSO), where the model parameters are updated sparsely based on novel optimization and selection criteria, in a manner that does not require additional models or data other than that in the forget set. More specifically, we propose an entropy-based loss that is shown to lead to more stable optimization and better preserves model utility than existing methods. In addition, we propose a contrastive gradient metric that takes both the gradient magnitude and direction into consideration, so as to localize model parameters to update in a sparse model updating scehme. Extensive experiments across three model scales demonstrate that our method excels in handling large-scale forgetting requests while preserving model ability in language generation and understanding.
Search
Fix data
Co-authors
- Martin Ferianc 1
- Reem Masoud 1
- Ioannis Patras 1
- Miguel Rodrigues Rodrigues 1
- Philip C. Treleaven 1
- show all...