Zixuan Liu
2022
Textomics: A Dataset for Genomics Data Summary Generation
Mu-Chun Wang
|
Zixuan Liu
|
Sheng Wang
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Summarizing biomedical discovery from genomics data using natural languages is an essential step in biomedical research but is mostly done manually. Here, we introduce Textomics, a novel dataset of genomics data description, which contains 22,273 pairs of genomics data matrices and their summaries. Each summary is written by the researchers who generated the data and associated with a scientific paper. Based on this dataset, we study two novel tasks: generating textual summary from a genomics data matrix and vice versa. Inspired by the successful applications of k nearest neighbors in modeling genomics data, we propose a kNN-Vec2Text model to address these tasks and observe substantial improvement on our dataset. We further illustrate how Textomics can be used to advance other applications, including evaluating scientific paper embeddings and generating masked templates for scientific paper understanding. Textomics serves as the first benchmark for generating textual summaries for genomics data and we envision it will be broadly applied to other biomedical and natural language processing applications.
2021
GraghVQA: Language-Guided Graph Neural Networks for Graph-based Visual Question Answering
Weixin Liang
|
Yanhao Jiang
|
Zixuan Liu
Proceedings of the Third Workshop on Multimodal Artificial Intelligence
Images are more than a collection of objects or attributes — they represent a web of relationships among interconnected objects. Scene Graph has emerged as a new modality as a structured graphical representation of images. Scene Graph encodes objects as nodes connected via pairwise relations as edges. To support question answering on scene graphs, we propose GraphVQA, a language-guided graph neural network framework that translates and executes a natural language question as multiple iterations of message passing among graph nodes. We explore the design space of GraphVQA framework, and discuss the trade-off of different design choices. Our experiments on GQA dataset show that GraphVQA outperforms the state-of-the-art accuracy by a large margin (88.43% vs. 94.78%).