Zuohui Fu


2023

pdf bib
VIP5: Towards Multimodal Foundation Models for Recommendation
Shijie Geng | Juntao Tan | Shuchang Liu | Zuohui Fu | Yongfeng Zhang
Findings of the Association for Computational Linguistics: EMNLP 2023

Computer Vision (CV), Natural Language Processing (NLP), and Recommender Systems (RecSys) are three prominent AI applications that have traditionally developed independently, resulting in disparate modeling and engineering methodologies. This has impeded the ability for these fields to directly benefit from each other’s advancements. With the recent development of foundation models, large language models have emerged as a potential general-purpose interface for unifying different modalities and problem formulations. In light of this, we propose the development of a multimodal foundation model (MFM) considering visual, textual, and personalization modalities under the P5 recommendation paradigm, thus named VIP5 (Visual P5), to unify various modalities and recommendation tasks. This will enable the processing of multiple modalities in a shared architecture for improved recommendations. To achieve this, we introduce multimodal personalized prompts to accommodate multiple modalities under a shared format. Additionally, we propose a parameter-efficient training method for foundation models, which involves freezing the P5 backbone and fine-tuning lightweight adapters, resulting in improved recommendation performance and increased efficiency in terms of training time and memory usage. Code and data of VIP5 are available at https://github.com/jeykigung/VIP5.

2022

pdf bib
Assessing Combinational Generalization of Language Models in Biased Scenarios
Yanbo Fang | Zuohui Fu | Xin Dong | Yongfeng Zhang | Gerard de Melo
Proceedings of the 2nd Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 12th International Joint Conference on Natural Language Processing (Volume 2: Short Papers)

In light of the prominence of Pre-trained Language Models (PLMs) across numerous downstream tasks, shedding light on what they learn is an important endeavor. Whereas previous work focuses on assessing in-domain knowledge, we evaluate the generalization ability in biased scenarios through component combinations where it could be easy for the PLMs to learn shortcuts from the training corpus. This would lead to poor performance on the testing corpus, which is combinationally reconstructed from the training components. The results show that PLMs are able to overcome such distribution shifts for specific tasks and with sufficient data. We further find that overfitting can lead the models to depend more on biases for prediction, thus hurting the combinational generalization ability of PLMs.

pdf bib
Improving Personalized Explanation Generation through Visualization
Shijie Geng | Zuohui Fu | Yingqiang Ge | Lei Li | Gerard de Melo | Yongfeng Zhang
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

In modern recommender systems, there are usually comments or reviews from users that justify their ratings for different items. Trained on such textual corpus, explainable recommendation models learn to discover user interests and generate personalized explanations. Though able to provide plausible explanations, existing models tend to generate repeated sentences for different items or empty sentences with insufficient details. This begs an interesting question: can we immerse the models in a multimodal environment to gain proper awareness of real-world concepts and alleviate above shortcomings? To this end, we propose a visually-enhanced approach named METER with the help of visualization generation and text–image matching discrimination: the explainable recommendation model is encouraged to visualize what it refers to while incurring a penalty if the visualization is incongruent with the textual explanation. Experimental results and a manual assessment demonstrate that our approach can improve not only the text quality but also the diversity and explainability of the generated explanations.

2021

pdf bib
Data Augmentation with Adversarial Training for Cross-Lingual NLI
Xin Dong | Yaxin Zhu | Zuohui Fu | Dongkuan Xu | Gerard de Melo
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Due to recent pretrained multilingual representation models, it has become feasible to exploit labeled data from one language to train a cross-lingual model that can then be applied to multiple new languages. In practice, however, we still face the problem of scarce labeled data, leading to subpar results. In this paper, we propose a novel data augmentation strategy for better cross-lingual natural language inference by enriching the data to reflect more diversity in a semantically faithful way. To this end, we propose two methods of training a generative model to induce synthesized examples, and then leverage the resulting data using an adversarial training regimen for more robustness. In a series of detailed experiments, we show that this fruitful combination leads to substantial gains in cross-lingual inference.

pdf bib
Context-Aware Interaction Network for Question Matching
Zhe Hu | Zuohui Fu | Yu Yin | Gerard de Melo
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Impressive milestones have been achieved in text matching by adopting a cross-attention mechanism to capture pertinent semantic connections between two sentence representations. However, regular cross-attention focuses on word-level links between the two input sequences, neglecting the importance of contextual information. We propose a context-aware interaction network (COIN) to properly align two sequences and infer their semantic relationship. Specifically, each interaction block includes (1) a context-aware cross-attention mechanism to effectively integrate contextual information when aligning two sequences, and (2) a gate fusion layer to flexibly interpolate aligned representations. We apply multiple stacked interaction blocks to produce alignments at different levels and gradually refine the attention results. Experiments on two question matching datasets and detailed analyses demonstrate the effectiveness of our model.

pdf bib
Faithfully Explainable Recommendation via Neural Logic Reasoning
Yaxin Zhu | Yikun Xian | Zuohui Fu | Gerard de Melo | Yongfeng Zhang
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Knowledge graphs (KG) have become increasingly important to endow modern recommender systems with the ability to generate traceable reasoning paths to explain the recommendation process. However, prior research rarely considers the faithfulness of the derived explanations to justify the decision-making process. To the best of our knowledge, this is the first work that models and evaluates faithfully explainable recommendation under the framework of KG reasoning. Specifically, we propose neural logic reasoning for explainable recommendation (LOGER) by drawing on interpretable logical rules to guide the path-reasoning process for explanation generation. We experiment on three large-scale datasets in the e-commerce domain, demonstrating the effectiveness of our method in delivering high-quality recommendations as well as ascertaining the faithfulness of the derived explanation.

2020

pdf bib
Enhanced Sentence Alignment Network for Efficient Short Text Matching
Zhe Hu | Zuohui Fu | Cheng Peng | Weiwei Wang
Proceedings of the Sixth Workshop on Noisy User-generated Text (W-NUT 2020)

Cross-sentence attention has been widely applied in text matching, in which model learns the aligned information between two intermediate sequence representations to capture their semantic relationship. However, commonly the intermediate representations are generated solely based on the preceding layers and the models may suffer from error propagation and unstable matching, especially when multiple attention layers are used. In this paper, we pro-pose an enhanced sentence alignment network with simple gated feature augmentation, where the model is able to flexibly integrate both original word and contextual features to improve the cross-sentence attention. Moreover, our model is less complex with fewer parameters compared to many state-of-the-art structures. Experiments on three benchmark datasets validate our model capacity for text matching.

2019

pdf bib
Rhetorically Controlled Encoder-Decoder for Modern Chinese Poetry Generation
Zhiqiang Liu | Zuohui Fu | Jie Cao | Gerard de Melo | Yik-Cheung Tam | Cheng Niu | Jie Zhou
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

Rhetoric is a vital element in modern poetry, and plays an essential role in improving its aesthetics. However, to date, it has not been considered in research on automatic poetry generation. In this paper, we propose a rhetorically controlled encoder-decoder for modern Chinese poetry generation. Our model relies on a continuous latent variable as a rhetoric controller to capture various rhetorical patterns in an encoder, and then incorporates rhetoric-based mixtures while generating modern Chinese poetry. For metaphor and personification, an automated evaluation shows that our model outperforms state-of-the-art baselines by a substantial margin, while human evaluation shows that our model generates better poems than baseline methods in terms of fluency, coherence, meaningfulness, and rhetorical aesthetics.