@inproceedings{zhang-etal-2020-syntax,
title = "Syntax-Aware Opinion Role Labeling with Dependency Graph Convolutional Networks",
author = "Zhang, Bo and
Zhang, Yue and
Wang, Rui and
Li, Zhenghua and
Zhang, Min",
editor = "Jurafsky, Dan and
Chai, Joyce and
Schluter, Natalie and
Tetreault, Joel",
booktitle = "Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics",
month = jul,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.acl-main.297",
doi = "10.18653/v1/2020.acl-main.297",
pages = "3249--3258",
abstract = "Opinion role labeling (ORL) is a fine-grained opinion analysis task and aims to answer {``}who expressed what kind of sentiment towards what?{''}. Due to the scarcity of labeled data, ORL remains challenging for data-driven methods. In this work, we try to enhance neural ORL models with syntactic knowledge by comparing and integrating different representations. We also propose dependency graph convolutional networks (DEPGCN) to encode parser information at different processing levels. In order to compensate for parser inaccuracy and reduce error propagation, we introduce multi-task learning (MTL) to train the parser and the ORL model simultaneously. We verify our methods on the benchmark MPQA corpus. The experimental results show that syntactic information is highly valuable for ORL, and our final MTL model effectively boosts the F1 score by 9.29 over the syntax-agnostic baseline. In addition, we find that the contributions from syntactic knowledge do not fully overlap with contextualized word representations (BERT). Our best model achieves 4.34 higher F1 score than the current state-ofthe-art.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="zhang-etal-2020-syntax">
<titleInfo>
<title>Syntax-Aware Opinion Role Labeling with Dependency Graph Convolutional Networks</title>
</titleInfo>
<name type="personal">
<namePart type="given">Bo</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yue</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rui</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zhenghua</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Min</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Dan</namePart>
<namePart type="family">Jurafsky</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joyce</namePart>
<namePart type="family">Chai</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Natalie</namePart>
<namePart type="family">Schluter</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joel</namePart>
<namePart type="family">Tetreault</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Opinion role labeling (ORL) is a fine-grained opinion analysis task and aims to answer “who expressed what kind of sentiment towards what?”. Due to the scarcity of labeled data, ORL remains challenging for data-driven methods. In this work, we try to enhance neural ORL models with syntactic knowledge by comparing and integrating different representations. We also propose dependency graph convolutional networks (DEPGCN) to encode parser information at different processing levels. In order to compensate for parser inaccuracy and reduce error propagation, we introduce multi-task learning (MTL) to train the parser and the ORL model simultaneously. We verify our methods on the benchmark MPQA corpus. The experimental results show that syntactic information is highly valuable for ORL, and our final MTL model effectively boosts the F1 score by 9.29 over the syntax-agnostic baseline. In addition, we find that the contributions from syntactic knowledge do not fully overlap with contextualized word representations (BERT). Our best model achieves 4.34 higher F1 score than the current state-ofthe-art.</abstract>
<identifier type="citekey">zhang-etal-2020-syntax</identifier>
<identifier type="doi">10.18653/v1/2020.acl-main.297</identifier>
<location>
<url>https://aclanthology.org/2020.acl-main.297</url>
</location>
<part>
<date>2020-07</date>
<extent unit="page">
<start>3249</start>
<end>3258</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Syntax-Aware Opinion Role Labeling with Dependency Graph Convolutional Networks
%A Zhang, Bo
%A Zhang, Yue
%A Wang, Rui
%A Li, Zhenghua
%A Zhang, Min
%Y Jurafsky, Dan
%Y Chai, Joyce
%Y Schluter, Natalie
%Y Tetreault, Joel
%S Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics
%D 2020
%8 July
%I Association for Computational Linguistics
%C Online
%F zhang-etal-2020-syntax
%X Opinion role labeling (ORL) is a fine-grained opinion analysis task and aims to answer “who expressed what kind of sentiment towards what?”. Due to the scarcity of labeled data, ORL remains challenging for data-driven methods. In this work, we try to enhance neural ORL models with syntactic knowledge by comparing and integrating different representations. We also propose dependency graph convolutional networks (DEPGCN) to encode parser information at different processing levels. In order to compensate for parser inaccuracy and reduce error propagation, we introduce multi-task learning (MTL) to train the parser and the ORL model simultaneously. We verify our methods on the benchmark MPQA corpus. The experimental results show that syntactic information is highly valuable for ORL, and our final MTL model effectively boosts the F1 score by 9.29 over the syntax-agnostic baseline. In addition, we find that the contributions from syntactic knowledge do not fully overlap with contextualized word representations (BERT). Our best model achieves 4.34 higher F1 score than the current state-ofthe-art.
%R 10.18653/v1/2020.acl-main.297
%U https://aclanthology.org/2020.acl-main.297
%U https://doi.org/10.18653/v1/2020.acl-main.297
%P 3249-3258
Markdown (Informal)
[Syntax-Aware Opinion Role Labeling with Dependency Graph Convolutional Networks](https://aclanthology.org/2020.acl-main.297) (Zhang et al., ACL 2020)
ACL