@inproceedings{zhao-etal-2020-line,
title = "Line Graph Enhanced {AMR}-to-Text Generation with Mix-Order Graph Attention Networks",
author = "Zhao, Yanbin and
Chen, Lu and
Chen, Zhi and
Cao, Ruisheng and
Zhu, Su and
Yu, Kai",
editor = "Jurafsky, Dan and
Chai, Joyce and
Schluter, Natalie and
Tetreault, Joel",
booktitle = "Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics",
month = jul,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.acl-main.67",
doi = "10.18653/v1/2020.acl-main.67",
pages = "732--741",
abstract = "Efficient structure encoding for graphs with labeled edges is an important yet challenging point in many graph-based models. This work focuses on AMR-to-text generation {--} A graph-to-sequence task aiming to recover natural language from Abstract Meaning Representations (AMR). Existing graph-to-sequence approaches generally utilize graph neural networks as their encoders, which have two limitations: 1) The message propagation process in AMR graphs is only guided by the first-order adjacency information. 2) The relationships between labeled edges are not fully considered. In this work, we propose a novel graph encoding framework which can effectively explore the edge relations. We also adopt graph attention networks with higher-order neighborhood information to encode the rich structure in AMR graphs. Experiment results show that our approach obtains new state-of-the-art performance on English AMR benchmark datasets. The ablation analyses also demonstrate that both edge relations and higher-order information are beneficial to graph-to-sequence modeling.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="zhao-etal-2020-line">
<titleInfo>
<title>Line Graph Enhanced AMR-to-Text Generation with Mix-Order Graph Attention Networks</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yanbin</namePart>
<namePart type="family">Zhao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lu</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zhi</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ruisheng</namePart>
<namePart type="family">Cao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Su</namePart>
<namePart type="family">Zhu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kai</namePart>
<namePart type="family">Yu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Dan</namePart>
<namePart type="family">Jurafsky</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joyce</namePart>
<namePart type="family">Chai</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Natalie</namePart>
<namePart type="family">Schluter</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joel</namePart>
<namePart type="family">Tetreault</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Efficient structure encoding for graphs with labeled edges is an important yet challenging point in many graph-based models. This work focuses on AMR-to-text generation – A graph-to-sequence task aiming to recover natural language from Abstract Meaning Representations (AMR). Existing graph-to-sequence approaches generally utilize graph neural networks as their encoders, which have two limitations: 1) The message propagation process in AMR graphs is only guided by the first-order adjacency information. 2) The relationships between labeled edges are not fully considered. In this work, we propose a novel graph encoding framework which can effectively explore the edge relations. We also adopt graph attention networks with higher-order neighborhood information to encode the rich structure in AMR graphs. Experiment results show that our approach obtains new state-of-the-art performance on English AMR benchmark datasets. The ablation analyses also demonstrate that both edge relations and higher-order information are beneficial to graph-to-sequence modeling.</abstract>
<identifier type="citekey">zhao-etal-2020-line</identifier>
<identifier type="doi">10.18653/v1/2020.acl-main.67</identifier>
<location>
<url>https://aclanthology.org/2020.acl-main.67</url>
</location>
<part>
<date>2020-07</date>
<extent unit="page">
<start>732</start>
<end>741</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Line Graph Enhanced AMR-to-Text Generation with Mix-Order Graph Attention Networks
%A Zhao, Yanbin
%A Chen, Lu
%A Chen, Zhi
%A Cao, Ruisheng
%A Zhu, Su
%A Yu, Kai
%Y Jurafsky, Dan
%Y Chai, Joyce
%Y Schluter, Natalie
%Y Tetreault, Joel
%S Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics
%D 2020
%8 July
%I Association for Computational Linguistics
%C Online
%F zhao-etal-2020-line
%X Efficient structure encoding for graphs with labeled edges is an important yet challenging point in many graph-based models. This work focuses on AMR-to-text generation – A graph-to-sequence task aiming to recover natural language from Abstract Meaning Representations (AMR). Existing graph-to-sequence approaches generally utilize graph neural networks as their encoders, which have two limitations: 1) The message propagation process in AMR graphs is only guided by the first-order adjacency information. 2) The relationships between labeled edges are not fully considered. In this work, we propose a novel graph encoding framework which can effectively explore the edge relations. We also adopt graph attention networks with higher-order neighborhood information to encode the rich structure in AMR graphs. Experiment results show that our approach obtains new state-of-the-art performance on English AMR benchmark datasets. The ablation analyses also demonstrate that both edge relations and higher-order information are beneficial to graph-to-sequence modeling.
%R 10.18653/v1/2020.acl-main.67
%U https://aclanthology.org/2020.acl-main.67
%U https://doi.org/10.18653/v1/2020.acl-main.67
%P 732-741
Markdown (Informal)
[Line Graph Enhanced AMR-to-Text Generation with Mix-Order Graph Attention Networks](https://aclanthology.org/2020.acl-main.67) (Zhao et al., ACL 2020)
ACL