@inproceedings{mandya-etal-2020-graph,
title = "Graph Convolution over Multiple Dependency Sub-graphs for Relation Extraction",
author = "Mandya, Angrosh and
Bollegala, Danushka and
Coenen, Frans",
editor = "Scott, Donia and
Bel, Nuria and
Zong, Chengqing",
booktitle = "Proceedings of the 28th International Conference on Computational Linguistics",
month = dec,
year = "2020",
address = "Barcelona, Spain (Online)",
publisher = "International Committee on Computational Linguistics",
url = "https://aclanthology.org/2020.coling-main.565",
doi = "10.18653/v1/2020.coling-main.565",
pages = "6424--6435",
abstract = "We propose a contextualised graph convolution network over multiple dependency-based sub-graphs for relation extraction. A novel method to construct multiple sub-graphs using words in shortest dependency path and words linked to entities in the dependency parse is proposed. Graph convolution operation is performed over the resulting multiple sub-graphs to obtain more informative features useful for relation extraction. Our experimental results show that the proposed method achieves superior performance over the existing GCN-based models achieving state-of-the-art performance on cross-sentence n-ary relation extraction dataset and SemEval 2010 Task 8 sentence-level relation extraction dataset. Our model also achieves a comparable performance to the SoTA on the TACRED dataset.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="mandya-etal-2020-graph">
<titleInfo>
<title>Graph Convolution over Multiple Dependency Sub-graphs for Relation Extraction</title>
</titleInfo>
<name type="personal">
<namePart type="given">Angrosh</namePart>
<namePart type="family">Mandya</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Danushka</namePart>
<namePart type="family">Bollegala</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Frans</namePart>
<namePart type="family">Coenen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 28th International Conference on Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Donia</namePart>
<namePart type="family">Scott</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nuria</namePart>
<namePart type="family">Bel</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chengqing</namePart>
<namePart type="family">Zong</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>International Committee on Computational Linguistics</publisher>
<place>
<placeTerm type="text">Barcelona, Spain (Online)</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We propose a contextualised graph convolution network over multiple dependency-based sub-graphs for relation extraction. A novel method to construct multiple sub-graphs using words in shortest dependency path and words linked to entities in the dependency parse is proposed. Graph convolution operation is performed over the resulting multiple sub-graphs to obtain more informative features useful for relation extraction. Our experimental results show that the proposed method achieves superior performance over the existing GCN-based models achieving state-of-the-art performance on cross-sentence n-ary relation extraction dataset and SemEval 2010 Task 8 sentence-level relation extraction dataset. Our model also achieves a comparable performance to the SoTA on the TACRED dataset.</abstract>
<identifier type="citekey">mandya-etal-2020-graph</identifier>
<identifier type="doi">10.18653/v1/2020.coling-main.565</identifier>
<location>
<url>https://aclanthology.org/2020.coling-main.565</url>
</location>
<part>
<date>2020-12</date>
<extent unit="page">
<start>6424</start>
<end>6435</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Graph Convolution over Multiple Dependency Sub-graphs for Relation Extraction
%A Mandya, Angrosh
%A Bollegala, Danushka
%A Coenen, Frans
%Y Scott, Donia
%Y Bel, Nuria
%Y Zong, Chengqing
%S Proceedings of the 28th International Conference on Computational Linguistics
%D 2020
%8 December
%I International Committee on Computational Linguistics
%C Barcelona, Spain (Online)
%F mandya-etal-2020-graph
%X We propose a contextualised graph convolution network over multiple dependency-based sub-graphs for relation extraction. A novel method to construct multiple sub-graphs using words in shortest dependency path and words linked to entities in the dependency parse is proposed. Graph convolution operation is performed over the resulting multiple sub-graphs to obtain more informative features useful for relation extraction. Our experimental results show that the proposed method achieves superior performance over the existing GCN-based models achieving state-of-the-art performance on cross-sentence n-ary relation extraction dataset and SemEval 2010 Task 8 sentence-level relation extraction dataset. Our model also achieves a comparable performance to the SoTA on the TACRED dataset.
%R 10.18653/v1/2020.coling-main.565
%U https://aclanthology.org/2020.coling-main.565
%U https://doi.org/10.18653/v1/2020.coling-main.565
%P 6424-6435
Markdown (Informal)
[Graph Convolution over Multiple Dependency Sub-graphs for Relation Extraction](https://aclanthology.org/2020.coling-main.565) (Mandya et al., COLING 2020)
ACL