@inproceedings{iter-etal-2020-entity,
title = "Entity Attribute Relation Extraction with Attribute-Aware Embeddings",
author = "Iter, Dan and
Yu, Xiao and
Li, Fangtao",
editor = "Agirre, Eneko and
Apidianaki, Marianna and
Vuli{\'c}, Ivan",
booktitle = "Proceedings of Deep Learning Inside Out (DeeLIO): The First Workshop on Knowledge Extraction and Integration for Deep Learning Architectures",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.deelio-1.6",
doi = "10.18653/v1/2020.deelio-1.6",
pages = "50--55",
abstract = "Entity-attribute relations are a fundamental component for building large-scale knowledge bases, which are widely employed in modern search engines. However, most such knowledge bases are manually curated, covering only a small fraction of all attributes, even for common entities. To improve the precision of model-based entity-attribute extraction, we propose attribute-aware embeddings, which embeds entities and attributes in the same space by the similarity of their attributes. Our model, EANET, learns these embeddings by representing entities as a weighted sum of their attributes and concatenates these embeddings to mention level features. EANET achieves up to 91{\%} classification accuracy, outperforming strong baselines and achieves 83{\%} precision on manually labeled high confidence extractions, outperforming Biperpedia (Gupta et al., 2014), a previous state-of-the-art for large scale entity-attribute extraction.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="iter-etal-2020-entity">
<titleInfo>
<title>Entity Attribute Relation Extraction with Attribute-Aware Embeddings</title>
</titleInfo>
<name type="personal">
<namePart type="given">Dan</namePart>
<namePart type="family">Iter</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xiao</namePart>
<namePart type="family">Yu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Fangtao</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of Deep Learning Inside Out (DeeLIO): The First Workshop on Knowledge Extraction and Integration for Deep Learning Architectures</title>
</titleInfo>
<name type="personal">
<namePart type="given">Eneko</namePart>
<namePart type="family">Agirre</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marianna</namePart>
<namePart type="family">Apidianaki</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ivan</namePart>
<namePart type="family">Vulić</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Entity-attribute relations are a fundamental component for building large-scale knowledge bases, which are widely employed in modern search engines. However, most such knowledge bases are manually curated, covering only a small fraction of all attributes, even for common entities. To improve the precision of model-based entity-attribute extraction, we propose attribute-aware embeddings, which embeds entities and attributes in the same space by the similarity of their attributes. Our model, EANET, learns these embeddings by representing entities as a weighted sum of their attributes and concatenates these embeddings to mention level features. EANET achieves up to 91% classification accuracy, outperforming strong baselines and achieves 83% precision on manually labeled high confidence extractions, outperforming Biperpedia (Gupta et al., 2014), a previous state-of-the-art for large scale entity-attribute extraction.</abstract>
<identifier type="citekey">iter-etal-2020-entity</identifier>
<identifier type="doi">10.18653/v1/2020.deelio-1.6</identifier>
<location>
<url>https://aclanthology.org/2020.deelio-1.6</url>
</location>
<part>
<date>2020-11</date>
<extent unit="page">
<start>50</start>
<end>55</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Entity Attribute Relation Extraction with Attribute-Aware Embeddings
%A Iter, Dan
%A Yu, Xiao
%A Li, Fangtao
%Y Agirre, Eneko
%Y Apidianaki, Marianna
%Y Vulić, Ivan
%S Proceedings of Deep Learning Inside Out (DeeLIO): The First Workshop on Knowledge Extraction and Integration for Deep Learning Architectures
%D 2020
%8 November
%I Association for Computational Linguistics
%C Online
%F iter-etal-2020-entity
%X Entity-attribute relations are a fundamental component for building large-scale knowledge bases, which are widely employed in modern search engines. However, most such knowledge bases are manually curated, covering only a small fraction of all attributes, even for common entities. To improve the precision of model-based entity-attribute extraction, we propose attribute-aware embeddings, which embeds entities and attributes in the same space by the similarity of their attributes. Our model, EANET, learns these embeddings by representing entities as a weighted sum of their attributes and concatenates these embeddings to mention level features. EANET achieves up to 91% classification accuracy, outperforming strong baselines and achieves 83% precision on manually labeled high confidence extractions, outperforming Biperpedia (Gupta et al., 2014), a previous state-of-the-art for large scale entity-attribute extraction.
%R 10.18653/v1/2020.deelio-1.6
%U https://aclanthology.org/2020.deelio-1.6
%U https://doi.org/10.18653/v1/2020.deelio-1.6
%P 50-55
Markdown (Informal)
[Entity Attribute Relation Extraction with Attribute-Aware Embeddings](https://aclanthology.org/2020.deelio-1.6) (Iter et al., DeeLIO 2020)
ACL