@inproceedings{wang-etal-2020-knowledge-graph,
title = "Knowledge Graph Alignment with Entity-Pair Embedding",
author = "Wang, Zhichun and
Yang, Jinjian and
Ye, Xiaoju",
editor = "Webber, Bonnie and
Cohn, Trevor and
He, Yulan and
Liu, Yang",
booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.emnlp-main.130",
doi = "10.18653/v1/2020.emnlp-main.130",
pages = "1672--1680",
abstract = "Knowledge Graph (KG) alignment is to match entities in different KGs, which is important to knowledge fusion and integration. Recently, a number of embedding-based approaches for KG alignment have been proposed and achieved promising results. These approaches first embed entities in low-dimensional vector spaces, and then obtain entity alignments by computations on their vector representations. Although continuous improvements have been achieved by recent work, the performances of existing approaches are still not satisfactory. In this work, we present a new approach that directly learns embeddings of entity-pairs for KG alignment. Our approach first generates a pair-wise connectivity graph (PCG) of two KGs, whose nodes are entity-pairs and edges correspond to relation-pairs; it then learns node (entity-pair) embeddings of the PCG, which are used to predict equivalent relations of entities. To get desirable embeddings, a convolutional neural network is used to generate similarity features of entity-pairs from their attributes; and a graph neural network is employed to propagate the similarity features and get the final embeddings of entity-pairs. Experiments on five real-world datasets show that our approach can achieve the state-of-the-art KG alignment results.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="wang-etal-2020-knowledge-graph">
<titleInfo>
<title>Knowledge Graph Alignment with Entity-Pair Embedding</title>
</titleInfo>
<name type="personal">
<namePart type="given">Zhichun</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jinjian</namePart>
<namePart type="family">Yang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xiaoju</namePart>
<namePart type="family">Ye</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Bonnie</namePart>
<namePart type="family">Webber</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Trevor</namePart>
<namePart type="family">Cohn</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yulan</namePart>
<namePart type="family">He</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yang</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Knowledge Graph (KG) alignment is to match entities in different KGs, which is important to knowledge fusion and integration. Recently, a number of embedding-based approaches for KG alignment have been proposed and achieved promising results. These approaches first embed entities in low-dimensional vector spaces, and then obtain entity alignments by computations on their vector representations. Although continuous improvements have been achieved by recent work, the performances of existing approaches are still not satisfactory. In this work, we present a new approach that directly learns embeddings of entity-pairs for KG alignment. Our approach first generates a pair-wise connectivity graph (PCG) of two KGs, whose nodes are entity-pairs and edges correspond to relation-pairs; it then learns node (entity-pair) embeddings of the PCG, which are used to predict equivalent relations of entities. To get desirable embeddings, a convolutional neural network is used to generate similarity features of entity-pairs from their attributes; and a graph neural network is employed to propagate the similarity features and get the final embeddings of entity-pairs. Experiments on five real-world datasets show that our approach can achieve the state-of-the-art KG alignment results.</abstract>
<identifier type="citekey">wang-etal-2020-knowledge-graph</identifier>
<identifier type="doi">10.18653/v1/2020.emnlp-main.130</identifier>
<location>
<url>https://aclanthology.org/2020.emnlp-main.130</url>
</location>
<part>
<date>2020-11</date>
<extent unit="page">
<start>1672</start>
<end>1680</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Knowledge Graph Alignment with Entity-Pair Embedding
%A Wang, Zhichun
%A Yang, Jinjian
%A Ye, Xiaoju
%Y Webber, Bonnie
%Y Cohn, Trevor
%Y He, Yulan
%Y Liu, Yang
%S Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)
%D 2020
%8 November
%I Association for Computational Linguistics
%C Online
%F wang-etal-2020-knowledge-graph
%X Knowledge Graph (KG) alignment is to match entities in different KGs, which is important to knowledge fusion and integration. Recently, a number of embedding-based approaches for KG alignment have been proposed and achieved promising results. These approaches first embed entities in low-dimensional vector spaces, and then obtain entity alignments by computations on their vector representations. Although continuous improvements have been achieved by recent work, the performances of existing approaches are still not satisfactory. In this work, we present a new approach that directly learns embeddings of entity-pairs for KG alignment. Our approach first generates a pair-wise connectivity graph (PCG) of two KGs, whose nodes are entity-pairs and edges correspond to relation-pairs; it then learns node (entity-pair) embeddings of the PCG, which are used to predict equivalent relations of entities. To get desirable embeddings, a convolutional neural network is used to generate similarity features of entity-pairs from their attributes; and a graph neural network is employed to propagate the similarity features and get the final embeddings of entity-pairs. Experiments on five real-world datasets show that our approach can achieve the state-of-the-art KG alignment results.
%R 10.18653/v1/2020.emnlp-main.130
%U https://aclanthology.org/2020.emnlp-main.130
%U https://doi.org/10.18653/v1/2020.emnlp-main.130
%P 1672-1680
Markdown (Informal)
[Knowledge Graph Alignment with Entity-Pair Embedding](https://aclanthology.org/2020.emnlp-main.130) (Wang et al., EMNLP 2020)
ACL
- Zhichun Wang, Jinjian Yang, and Xiaoju Ye. 2020. Knowledge Graph Alignment with Entity-Pair Embedding. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 1672–1680, Online. Association for Computational Linguistics.