@inproceedings{kreutzer-etal-2020-inference,
title = "Inference Strategies for Machine Translation with Conditional Masking",
author = "Kreutzer, Julia and
Foster, George and
Cherry, Colin",
editor = "Webber, Bonnie and
Cohn, Trevor and
He, Yulan and
Liu, Yang",
booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.emnlp-main.465",
doi = "10.18653/v1/2020.emnlp-main.465",
pages = "5774--5782",
abstract = "Conditional masked language model (CMLM) training has proven successful for non-autoregressive and semi-autoregressive sequence generation tasks, such as machine translation. Given a trained CMLM, however, it is not clear what the best inference strategy is. We formulate masked inference as a factorization of conditional probabilities of partial sequences, show that this does not harm performance, and investigate a number of simple heuristics motivated by this perspective. We identify a thresholding strategy that has advantages over the standard {``}mask-predict{''} algorithm, and provide analyses of its behavior on machine translation tasks.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="kreutzer-etal-2020-inference">
<titleInfo>
<title>Inference Strategies for Machine Translation with Conditional Masking</title>
</titleInfo>
<name type="personal">
<namePart type="given">Julia</namePart>
<namePart type="family">Kreutzer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">George</namePart>
<namePart type="family">Foster</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Colin</namePart>
<namePart type="family">Cherry</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Bonnie</namePart>
<namePart type="family">Webber</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Trevor</namePart>
<namePart type="family">Cohn</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yulan</namePart>
<namePart type="family">He</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yang</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Conditional masked language model (CMLM) training has proven successful for non-autoregressive and semi-autoregressive sequence generation tasks, such as machine translation. Given a trained CMLM, however, it is not clear what the best inference strategy is. We formulate masked inference as a factorization of conditional probabilities of partial sequences, show that this does not harm performance, and investigate a number of simple heuristics motivated by this perspective. We identify a thresholding strategy that has advantages over the standard “mask-predict” algorithm, and provide analyses of its behavior on machine translation tasks.</abstract>
<identifier type="citekey">kreutzer-etal-2020-inference</identifier>
<identifier type="doi">10.18653/v1/2020.emnlp-main.465</identifier>
<location>
<url>https://aclanthology.org/2020.emnlp-main.465</url>
</location>
<part>
<date>2020-11</date>
<extent unit="page">
<start>5774</start>
<end>5782</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Inference Strategies for Machine Translation with Conditional Masking
%A Kreutzer, Julia
%A Foster, George
%A Cherry, Colin
%Y Webber, Bonnie
%Y Cohn, Trevor
%Y He, Yulan
%Y Liu, Yang
%S Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)
%D 2020
%8 November
%I Association for Computational Linguistics
%C Online
%F kreutzer-etal-2020-inference
%X Conditional masked language model (CMLM) training has proven successful for non-autoregressive and semi-autoregressive sequence generation tasks, such as machine translation. Given a trained CMLM, however, it is not clear what the best inference strategy is. We formulate masked inference as a factorization of conditional probabilities of partial sequences, show that this does not harm performance, and investigate a number of simple heuristics motivated by this perspective. We identify a thresholding strategy that has advantages over the standard “mask-predict” algorithm, and provide analyses of its behavior on machine translation tasks.
%R 10.18653/v1/2020.emnlp-main.465
%U https://aclanthology.org/2020.emnlp-main.465
%U https://doi.org/10.18653/v1/2020.emnlp-main.465
%P 5774-5782
Markdown (Informal)
[Inference Strategies for Machine Translation with Conditional Masking](https://aclanthology.org/2020.emnlp-main.465) (Kreutzer et al., EMNLP 2020)
ACL