@inproceedings{pethe-etal-2020-chapter,
title = "{C}hapter {C}aptor: {T}ext {S}egmentation in {N}ovels",
author = "Pethe, Charuta and
Kim, Allen and
Skiena, Steve",
editor = "Webber, Bonnie and
Cohn, Trevor and
He, Yulan and
Liu, Yang",
booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.emnlp-main.672",
doi = "10.18653/v1/2020.emnlp-main.672",
pages = "8373--8383",
abstract = "Books are typically segmented into chapters and sections, representing coherent sub-narratives and topics. We investigate the task of predicting chapter boundaries, as a proxy for the general task of segmenting long texts. We build a Project Gutenberg chapter segmentation data set of 9,126 English novels, using a hybrid approach combining neural inference and rule matching to recognize chapter title headers in books, achieving an F1-score of 0.77 on this task. Using this annotated data as ground truth after removing structural cues, we present cut-based and neural methods for chapter segmentation, achieving a F1-score of 0.453 on the challenging task of exact break prediction over book-length documents. Finally, we reveal interesting historical trends in the chapter structure of novels.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="pethe-etal-2020-chapter">
<titleInfo>
<title>Chapter Captor: Text Segmentation in Novels</title>
</titleInfo>
<name type="personal">
<namePart type="given">Charuta</namePart>
<namePart type="family">Pethe</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Allen</namePart>
<namePart type="family">Kim</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Steve</namePart>
<namePart type="family">Skiena</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Bonnie</namePart>
<namePart type="family">Webber</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Trevor</namePart>
<namePart type="family">Cohn</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yulan</namePart>
<namePart type="family">He</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yang</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Books are typically segmented into chapters and sections, representing coherent sub-narratives and topics. We investigate the task of predicting chapter boundaries, as a proxy for the general task of segmenting long texts. We build a Project Gutenberg chapter segmentation data set of 9,126 English novels, using a hybrid approach combining neural inference and rule matching to recognize chapter title headers in books, achieving an F1-score of 0.77 on this task. Using this annotated data as ground truth after removing structural cues, we present cut-based and neural methods for chapter segmentation, achieving a F1-score of 0.453 on the challenging task of exact break prediction over book-length documents. Finally, we reveal interesting historical trends in the chapter structure of novels.</abstract>
<identifier type="citekey">pethe-etal-2020-chapter</identifier>
<identifier type="doi">10.18653/v1/2020.emnlp-main.672</identifier>
<location>
<url>https://aclanthology.org/2020.emnlp-main.672</url>
</location>
<part>
<date>2020-11</date>
<extent unit="page">
<start>8373</start>
<end>8383</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Chapter Captor: Text Segmentation in Novels
%A Pethe, Charuta
%A Kim, Allen
%A Skiena, Steve
%Y Webber, Bonnie
%Y Cohn, Trevor
%Y He, Yulan
%Y Liu, Yang
%S Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)
%D 2020
%8 November
%I Association for Computational Linguistics
%C Online
%F pethe-etal-2020-chapter
%X Books are typically segmented into chapters and sections, representing coherent sub-narratives and topics. We investigate the task of predicting chapter boundaries, as a proxy for the general task of segmenting long texts. We build a Project Gutenberg chapter segmentation data set of 9,126 English novels, using a hybrid approach combining neural inference and rule matching to recognize chapter title headers in books, achieving an F1-score of 0.77 on this task. Using this annotated data as ground truth after removing structural cues, we present cut-based and neural methods for chapter segmentation, achieving a F1-score of 0.453 on the challenging task of exact break prediction over book-length documents. Finally, we reveal interesting historical trends in the chapter structure of novels.
%R 10.18653/v1/2020.emnlp-main.672
%U https://aclanthology.org/2020.emnlp-main.672
%U https://doi.org/10.18653/v1/2020.emnlp-main.672
%P 8373-8383
Markdown (Informal)
[Chapter Captor: Text Segmentation in Novels](https://aclanthology.org/2020.emnlp-main.672) (Pethe et al., EMNLP 2020)
ACL
- Charuta Pethe, Allen Kim, and Steve Skiena. 2020. Chapter Captor: Text Segmentation in Novels. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 8373–8383, Online. Association for Computational Linguistics.