@inproceedings{li-etal-2020-attentive,
title = "An Attentive Recurrent Model for Incremental Prediction of Sentence-final Verbs",
author = "Li, Wenyan and
Grissom II, Alvin and
Boyd-Graber, Jordan",
editor = "Cohn, Trevor and
He, Yulan and
Liu, Yang",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2020",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.findings-emnlp.12",
doi = "10.18653/v1/2020.findings-emnlp.12",
pages = "126--136",
abstract = "Verb prediction is important for understanding human processing of verb-final languages, with practical applications to real-time simultaneous interpretation from verb-final to verb-medial languages. While previous approaches use classical statistical models, we introduce an attention-based neural model to incrementally predict final verbs on incomplete sentences in Japanese and German SOV sentences. To offer flexibility to the model, we further incorporate synonym awareness. Our approach both better predicts the final verbs in Japanese and German and provides more interpretable explanations of why those verbs are selected.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="li-etal-2020-attentive">
<titleInfo>
<title>An Attentive Recurrent Model for Incremental Prediction of Sentence-final Verbs</title>
</titleInfo>
<name type="personal">
<namePart type="given">Wenyan</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alvin</namePart>
<namePart type="family">Grissom II</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jordan</namePart>
<namePart type="family">Boyd-Graber</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: EMNLP 2020</title>
</titleInfo>
<name type="personal">
<namePart type="given">Trevor</namePart>
<namePart type="family">Cohn</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yulan</namePart>
<namePart type="family">He</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yang</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Verb prediction is important for understanding human processing of verb-final languages, with practical applications to real-time simultaneous interpretation from verb-final to verb-medial languages. While previous approaches use classical statistical models, we introduce an attention-based neural model to incrementally predict final verbs on incomplete sentences in Japanese and German SOV sentences. To offer flexibility to the model, we further incorporate synonym awareness. Our approach both better predicts the final verbs in Japanese and German and provides more interpretable explanations of why those verbs are selected.</abstract>
<identifier type="citekey">li-etal-2020-attentive</identifier>
<identifier type="doi">10.18653/v1/2020.findings-emnlp.12</identifier>
<location>
<url>https://aclanthology.org/2020.findings-emnlp.12</url>
</location>
<part>
<date>2020-11</date>
<extent unit="page">
<start>126</start>
<end>136</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T An Attentive Recurrent Model for Incremental Prediction of Sentence-final Verbs
%A Li, Wenyan
%A Grissom II, Alvin
%A Boyd-Graber, Jordan
%Y Cohn, Trevor
%Y He, Yulan
%Y Liu, Yang
%S Findings of the Association for Computational Linguistics: EMNLP 2020
%D 2020
%8 November
%I Association for Computational Linguistics
%C Online
%F li-etal-2020-attentive
%X Verb prediction is important for understanding human processing of verb-final languages, with practical applications to real-time simultaneous interpretation from verb-final to verb-medial languages. While previous approaches use classical statistical models, we introduce an attention-based neural model to incrementally predict final verbs on incomplete sentences in Japanese and German SOV sentences. To offer flexibility to the model, we further incorporate synonym awareness. Our approach both better predicts the final verbs in Japanese and German and provides more interpretable explanations of why those verbs are selected.
%R 10.18653/v1/2020.findings-emnlp.12
%U https://aclanthology.org/2020.findings-emnlp.12
%U https://doi.org/10.18653/v1/2020.findings-emnlp.12
%P 126-136
Markdown (Informal)
[An Attentive Recurrent Model for Incremental Prediction of Sentence-final Verbs](https://aclanthology.org/2020.findings-emnlp.12) (Li et al., Findings 2020)
ACL