@inproceedings{vashishtha-etal-2020-temporal,
title = "Temporal Reasoning in Natural Language Inference",
author = "Vashishtha, Siddharth and
Poliak, Adam and
Lal, Yash Kumar and
Van Durme, Benjamin and
White, Aaron Steven",
editor = "Cohn, Trevor and
He, Yulan and
Liu, Yang",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2020",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.findings-emnlp.363",
doi = "10.18653/v1/2020.findings-emnlp.363",
pages = "4070--4078",
abstract = "We introduce five new natural language inference (NLI) datasets focused on temporal reasoning. We recast four existing datasets annotated for event duration{---}how long an event lasts{---}and event ordering{---}how events are temporally arranged{---}into more than one million NLI examples. We use these datasets to investigate how well neural models trained on a popular NLI corpus capture these forms of temporal reasoning.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="vashishtha-etal-2020-temporal">
<titleInfo>
<title>Temporal Reasoning in Natural Language Inference</title>
</titleInfo>
<name type="personal">
<namePart type="given">Siddharth</namePart>
<namePart type="family">Vashishtha</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Adam</namePart>
<namePart type="family">Poliak</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yash</namePart>
<namePart type="given">Kumar</namePart>
<namePart type="family">Lal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Benjamin</namePart>
<namePart type="family">Van Durme</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Aaron</namePart>
<namePart type="given">Steven</namePart>
<namePart type="family">White</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: EMNLP 2020</title>
</titleInfo>
<name type="personal">
<namePart type="given">Trevor</namePart>
<namePart type="family">Cohn</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yulan</namePart>
<namePart type="family">He</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yang</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We introduce five new natural language inference (NLI) datasets focused on temporal reasoning. We recast four existing datasets annotated for event duration—how long an event lasts—and event ordering—how events are temporally arranged—into more than one million NLI examples. We use these datasets to investigate how well neural models trained on a popular NLI corpus capture these forms of temporal reasoning.</abstract>
<identifier type="citekey">vashishtha-etal-2020-temporal</identifier>
<identifier type="doi">10.18653/v1/2020.findings-emnlp.363</identifier>
<location>
<url>https://aclanthology.org/2020.findings-emnlp.363</url>
</location>
<part>
<date>2020-11</date>
<extent unit="page">
<start>4070</start>
<end>4078</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Temporal Reasoning in Natural Language Inference
%A Vashishtha, Siddharth
%A Poliak, Adam
%A Lal, Yash Kumar
%A Van Durme, Benjamin
%A White, Aaron Steven
%Y Cohn, Trevor
%Y He, Yulan
%Y Liu, Yang
%S Findings of the Association for Computational Linguistics: EMNLP 2020
%D 2020
%8 November
%I Association for Computational Linguistics
%C Online
%F vashishtha-etal-2020-temporal
%X We introduce five new natural language inference (NLI) datasets focused on temporal reasoning. We recast four existing datasets annotated for event duration—how long an event lasts—and event ordering—how events are temporally arranged—into more than one million NLI examples. We use these datasets to investigate how well neural models trained on a popular NLI corpus capture these forms of temporal reasoning.
%R 10.18653/v1/2020.findings-emnlp.363
%U https://aclanthology.org/2020.findings-emnlp.363
%U https://doi.org/10.18653/v1/2020.findings-emnlp.363
%P 4070-4078
Markdown (Informal)
[Temporal Reasoning in Natural Language Inference](https://aclanthology.org/2020.findings-emnlp.363) (Vashishtha et al., Findings 2020)
ACL
- Siddharth Vashishtha, Adam Poliak, Yash Kumar Lal, Benjamin Van Durme, and Aaron Steven White. 2020. Temporal Reasoning in Natural Language Inference. In Findings of the Association for Computational Linguistics: EMNLP 2020, pages 4070–4078, Online. Association for Computational Linguistics.