Joint Learning of Representations for Web-tables, Entities and Types using Graph Convolutional Network

Aniket Pramanick, Indrajit Bhattacharya


Abstract
Existing approaches for table annotation with entities and types either capture the structure of table using graphical models, or learn embeddings of table entries without accounting for the complete syntactic structure. We propose TabGCN, that uses Graph Convolutional Networks to capture the complete structure of tables, knowledge graph and the training annotations, and jointly learns embeddings for table elements as well as the entities and types. To account for knowledge incompleteness, TabGCN’s embeddings can be used to discover new entities and types. Using experiments on 5 benchmark datasets, we show that TabGCN significantly outperforms multiple state-of-the-art baselines for table annotation, while showing promising performance on downstream table-related applications.
Anthology ID:
2021.eacl-main.102
Volume:
Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume
Month:
April
Year:
2021
Address:
Online
Editors:
Paola Merlo, Jorg Tiedemann, Reut Tsarfaty
Venue:
EACL
SIG:
Publisher:
Association for Computational Linguistics
Note:
Pages:
1197–1206
Language:
URL:
https://aclanthology.org/2021.eacl-main.102
DOI:
10.18653/v1/2021.eacl-main.102
Bibkey:
Cite (ACL):
Aniket Pramanick and Indrajit Bhattacharya. 2021. Joint Learning of Representations for Web-tables, Entities and Types using Graph Convolutional Network. In Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pages 1197–1206, Online. Association for Computational Linguistics.
Cite (Informal):
Joint Learning of Representations for Web-tables, Entities and Types using Graph Convolutional Network (Pramanick & Bhattacharya, EACL 2021)
Copy Citation:
PDF:
https://aclanthology.org/2021.eacl-main.102.pdf