@inproceedings{krishnamurthy-etal-2021-reference-based,
title = "Reference-based Weak Supervision for Answer Sentence Selection using Web Data",
author = "Krishnamurthy, Vivek and
Vu, Thuy and
Moschitti, Alessandro",
editor = "Moens, Marie-Francine and
Huang, Xuanjing and
Specia, Lucia and
Yih, Scott Wen-tau",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2021",
month = nov,
year = "2021",
address = "Punta Cana, Dominican Republic",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.findings-emnlp.363",
doi = "10.18653/v1/2021.findings-emnlp.363",
pages = "4294--4299",
abstract = "Answer Sentence Selection (AS2) models are core components of efficient retrieval-based Question Answering (QA) systems. We present the Reference-based Weak Supervision (RWS), a fully automatic large-scale data pipeline that harvests high-quality weakly- supervised answer sentences from Web data, only requiring a question-reference pair as input. We evaluated the quality of the RWS-derived data by training TANDA models, which are the state of the art for AS2. Our results show that the data consistently bolsters TANDA on three different datasets. In particular, we set the new state of the art for AS2 to P@1=90.1{\%}, and MAP=92.9{\%}, on WikiQA. We record similar performance gains of RWS on a much larger dataset named Web-based Question Answering (WQA).",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="krishnamurthy-etal-2021-reference-based">
<titleInfo>
<title>Reference-based Weak Supervision for Answer Sentence Selection using Web Data</title>
</titleInfo>
<name type="personal">
<namePart type="given">Vivek</namePart>
<namePart type="family">Krishnamurthy</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Thuy</namePart>
<namePart type="family">Vu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alessandro</namePart>
<namePart type="family">Moschitti</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2021-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: EMNLP 2021</title>
</titleInfo>
<name type="personal">
<namePart type="given">Marie-Francine</namePart>
<namePart type="family">Moens</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xuanjing</namePart>
<namePart type="family">Huang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lucia</namePart>
<namePart type="family">Specia</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Scott</namePart>
<namePart type="given">Wen-tau</namePart>
<namePart type="family">Yih</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Punta Cana, Dominican Republic</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Answer Sentence Selection (AS2) models are core components of efficient retrieval-based Question Answering (QA) systems. We present the Reference-based Weak Supervision (RWS), a fully automatic large-scale data pipeline that harvests high-quality weakly- supervised answer sentences from Web data, only requiring a question-reference pair as input. We evaluated the quality of the RWS-derived data by training TANDA models, which are the state of the art for AS2. Our results show that the data consistently bolsters TANDA on three different datasets. In particular, we set the new state of the art for AS2 to P@1=90.1%, and MAP=92.9%, on WikiQA. We record similar performance gains of RWS on a much larger dataset named Web-based Question Answering (WQA).</abstract>
<identifier type="citekey">krishnamurthy-etal-2021-reference-based</identifier>
<identifier type="doi">10.18653/v1/2021.findings-emnlp.363</identifier>
<location>
<url>https://aclanthology.org/2021.findings-emnlp.363</url>
</location>
<part>
<date>2021-11</date>
<extent unit="page">
<start>4294</start>
<end>4299</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Reference-based Weak Supervision for Answer Sentence Selection using Web Data
%A Krishnamurthy, Vivek
%A Vu, Thuy
%A Moschitti, Alessandro
%Y Moens, Marie-Francine
%Y Huang, Xuanjing
%Y Specia, Lucia
%Y Yih, Scott Wen-tau
%S Findings of the Association for Computational Linguistics: EMNLP 2021
%D 2021
%8 November
%I Association for Computational Linguistics
%C Punta Cana, Dominican Republic
%F krishnamurthy-etal-2021-reference-based
%X Answer Sentence Selection (AS2) models are core components of efficient retrieval-based Question Answering (QA) systems. We present the Reference-based Weak Supervision (RWS), a fully automatic large-scale data pipeline that harvests high-quality weakly- supervised answer sentences from Web data, only requiring a question-reference pair as input. We evaluated the quality of the RWS-derived data by training TANDA models, which are the state of the art for AS2. Our results show that the data consistently bolsters TANDA on three different datasets. In particular, we set the new state of the art for AS2 to P@1=90.1%, and MAP=92.9%, on WikiQA. We record similar performance gains of RWS on a much larger dataset named Web-based Question Answering (WQA).
%R 10.18653/v1/2021.findings-emnlp.363
%U https://aclanthology.org/2021.findings-emnlp.363
%U https://doi.org/10.18653/v1/2021.findings-emnlp.363
%P 4294-4299
Markdown (Informal)
[Reference-based Weak Supervision for Answer Sentence Selection using Web Data](https://aclanthology.org/2021.findings-emnlp.363) (Krishnamurthy et al., Findings 2021)
ACL