@inproceedings{meripo-konam-2021-extracting,
title = "Extracting Appointment Spans from Medical Conversations",
author = "Meripo, Nimshi Venkat and
Konam, Sandeep",
editor = "Shivade, Chaitanya and
Gangadharaiah, Rashmi and
Gella, Spandana and
Konam, Sandeep and
Yuan, Shaoqing and
Zhang, Yi and
Bhatia, Parminder and
Wallace, Byron",
booktitle = "Proceedings of the Second Workshop on Natural Language Processing for Medical Conversations",
month = jun,
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.nlpmc-1.6",
doi = "10.18653/v1/2021.nlpmc-1.6",
pages = "41--46",
abstract = "Extracting structured information from medical conversations can reduce the documentation burden for doctors and help patients follow through with their care plan. In this paper, we introduce a novel task of extracting appointment spans from medical conversations. We frame this task as a sequence tagging problem and focus on extracting spans for appointment reason and time. However, annotating medical conversations is expensive, time-consuming, and requires considerable domain expertise. Hence, we propose to leverage weak supervision approaches, namely incomplete supervision, inaccurate supervision, and a hybrid supervision approach and evaluate both generic and domain-specific, ELMo, and BERT embeddings using sequence tagging models. The best performing model is the domain-specific BERT variant using weak hybrid supervision and obtains an F1 score of 79.32.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="meripo-konam-2021-extracting">
<titleInfo>
<title>Extracting Appointment Spans from Medical Conversations</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nimshi</namePart>
<namePart type="given">Venkat</namePart>
<namePart type="family">Meripo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sandeep</namePart>
<namePart type="family">Konam</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2021-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Second Workshop on Natural Language Processing for Medical Conversations</title>
</titleInfo>
<name type="personal">
<namePart type="given">Chaitanya</namePart>
<namePart type="family">Shivade</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rashmi</namePart>
<namePart type="family">Gangadharaiah</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Spandana</namePart>
<namePart type="family">Gella</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sandeep</namePart>
<namePart type="family">Konam</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shaoqing</namePart>
<namePart type="family">Yuan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yi</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Parminder</namePart>
<namePart type="family">Bhatia</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Byron</namePart>
<namePart type="family">Wallace</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Extracting structured information from medical conversations can reduce the documentation burden for doctors and help patients follow through with their care plan. In this paper, we introduce a novel task of extracting appointment spans from medical conversations. We frame this task as a sequence tagging problem and focus on extracting spans for appointment reason and time. However, annotating medical conversations is expensive, time-consuming, and requires considerable domain expertise. Hence, we propose to leverage weak supervision approaches, namely incomplete supervision, inaccurate supervision, and a hybrid supervision approach and evaluate both generic and domain-specific, ELMo, and BERT embeddings using sequence tagging models. The best performing model is the domain-specific BERT variant using weak hybrid supervision and obtains an F1 score of 79.32.</abstract>
<identifier type="citekey">meripo-konam-2021-extracting</identifier>
<identifier type="doi">10.18653/v1/2021.nlpmc-1.6</identifier>
<location>
<url>https://aclanthology.org/2021.nlpmc-1.6</url>
</location>
<part>
<date>2021-06</date>
<extent unit="page">
<start>41</start>
<end>46</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Extracting Appointment Spans from Medical Conversations
%A Meripo, Nimshi Venkat
%A Konam, Sandeep
%Y Shivade, Chaitanya
%Y Gangadharaiah, Rashmi
%Y Gella, Spandana
%Y Konam, Sandeep
%Y Yuan, Shaoqing
%Y Zhang, Yi
%Y Bhatia, Parminder
%Y Wallace, Byron
%S Proceedings of the Second Workshop on Natural Language Processing for Medical Conversations
%D 2021
%8 June
%I Association for Computational Linguistics
%C Online
%F meripo-konam-2021-extracting
%X Extracting structured information from medical conversations can reduce the documentation burden for doctors and help patients follow through with their care plan. In this paper, we introduce a novel task of extracting appointment spans from medical conversations. We frame this task as a sequence tagging problem and focus on extracting spans for appointment reason and time. However, annotating medical conversations is expensive, time-consuming, and requires considerable domain expertise. Hence, we propose to leverage weak supervision approaches, namely incomplete supervision, inaccurate supervision, and a hybrid supervision approach and evaluate both generic and domain-specific, ELMo, and BERT embeddings using sequence tagging models. The best performing model is the domain-specific BERT variant using weak hybrid supervision and obtains an F1 score of 79.32.
%R 10.18653/v1/2021.nlpmc-1.6
%U https://aclanthology.org/2021.nlpmc-1.6
%U https://doi.org/10.18653/v1/2021.nlpmc-1.6
%P 41-46
Markdown (Informal)
[Extracting Appointment Spans from Medical Conversations](https://aclanthology.org/2021.nlpmc-1.6) (Meripo & Konam, NLPMC 2021)
ACL