@inproceedings{engler-etal-2022-sensepolar,
title = "{S}ense{POLAR}: Word sense aware interpretability for pre-trained contextual word embeddings",
author = "Engler, Jan and
Sikdar, Sandipan and
Lutz, Marlene and
Strohmaier, Markus",
editor = "Goldberg, Yoav and
Kozareva, Zornitsa and
Zhang, Yue",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2022",
month = dec,
year = "2022",
address = "Abu Dhabi, United Arab Emirates",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.findings-emnlp.338",
doi = "10.18653/v1/2022.findings-emnlp.338",
pages = "4607--4619",
abstract = "Adding interpretability to word embeddings represents an area of active research in textrepresentation. Recent work has explored the potential of embedding words via so-called polardimensions (e.g. good vs. bad, correct vs. wrong). Examples of such recent approachesinclude SemAxis, POLAR, FrameAxis, and BiImp. Although these approaches provide interpretabledimensions for words, they have not been designed to deal with polysemy, i.e. they can not easily distinguish between different senses of words. To address this limitation, we present SensePOLAR, an extension of the original POLAR framework that enables wordsense aware interpretability for pre-trained contextual word embeddings. The resulting interpretable word embeddings achieve a level ofperformance that is comparable to original contextual word embeddings across a variety ofnatural language processing tasks including the GLUE and SQuAD benchmarks. Our workremoves a fundamental limitation of existing approaches by offering users sense aware interpretationsfor contextual word embeddings.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="engler-etal-2022-sensepolar">
<titleInfo>
<title>SensePOLAR: Word sense aware interpretability for pre-trained contextual word embeddings</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jan</namePart>
<namePart type="family">Engler</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sandipan</namePart>
<namePart type="family">Sikdar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marlene</namePart>
<namePart type="family">Lutz</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Markus</namePart>
<namePart type="family">Strohmaier</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: EMNLP 2022</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yoav</namePart>
<namePart type="family">Goldberg</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zornitsa</namePart>
<namePart type="family">Kozareva</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yue</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Abu Dhabi, United Arab Emirates</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Adding interpretability to word embeddings represents an area of active research in textrepresentation. Recent work has explored the potential of embedding words via so-called polardimensions (e.g. good vs. bad, correct vs. wrong). Examples of such recent approachesinclude SemAxis, POLAR, FrameAxis, and BiImp. Although these approaches provide interpretabledimensions for words, they have not been designed to deal with polysemy, i.e. they can not easily distinguish between different senses of words. To address this limitation, we present SensePOLAR, an extension of the original POLAR framework that enables wordsense aware interpretability for pre-trained contextual word embeddings. The resulting interpretable word embeddings achieve a level ofperformance that is comparable to original contextual word embeddings across a variety ofnatural language processing tasks including the GLUE and SQuAD benchmarks. Our workremoves a fundamental limitation of existing approaches by offering users sense aware interpretationsfor contextual word embeddings.</abstract>
<identifier type="citekey">engler-etal-2022-sensepolar</identifier>
<identifier type="doi">10.18653/v1/2022.findings-emnlp.338</identifier>
<location>
<url>https://aclanthology.org/2022.findings-emnlp.338</url>
</location>
<part>
<date>2022-12</date>
<extent unit="page">
<start>4607</start>
<end>4619</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T SensePOLAR: Word sense aware interpretability for pre-trained contextual word embeddings
%A Engler, Jan
%A Sikdar, Sandipan
%A Lutz, Marlene
%A Strohmaier, Markus
%Y Goldberg, Yoav
%Y Kozareva, Zornitsa
%Y Zhang, Yue
%S Findings of the Association for Computational Linguistics: EMNLP 2022
%D 2022
%8 December
%I Association for Computational Linguistics
%C Abu Dhabi, United Arab Emirates
%F engler-etal-2022-sensepolar
%X Adding interpretability to word embeddings represents an area of active research in textrepresentation. Recent work has explored the potential of embedding words via so-called polardimensions (e.g. good vs. bad, correct vs. wrong). Examples of such recent approachesinclude SemAxis, POLAR, FrameAxis, and BiImp. Although these approaches provide interpretabledimensions for words, they have not been designed to deal with polysemy, i.e. they can not easily distinguish between different senses of words. To address this limitation, we present SensePOLAR, an extension of the original POLAR framework that enables wordsense aware interpretability for pre-trained contextual word embeddings. The resulting interpretable word embeddings achieve a level ofperformance that is comparable to original contextual word embeddings across a variety ofnatural language processing tasks including the GLUE and SQuAD benchmarks. Our workremoves a fundamental limitation of existing approaches by offering users sense aware interpretationsfor contextual word embeddings.
%R 10.18653/v1/2022.findings-emnlp.338
%U https://aclanthology.org/2022.findings-emnlp.338
%U https://doi.org/10.18653/v1/2022.findings-emnlp.338
%P 4607-4619
Markdown (Informal)
[SensePOLAR: Word sense aware interpretability for pre-trained contextual word embeddings](https://aclanthology.org/2022.findings-emnlp.338) (Engler et al., Findings 2022)
ACL