@inproceedings{russo-etal-2023-helping,
title = "Helping a Friend or Supporting a Cause? Disentangling Active and Passive Cosponsorship in the {U}.{S}. Congress",
author = "Russo, Giuseppe and
Gote, Christoph and
Brandenberger, Laurence and
Schlosser, Sophia and
Schweitzer, Frank",
editor = "Rogers, Anna and
Boyd-Graber, Jordan and
Okazaki, Naoaki",
booktitle = "Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
month = jul,
year = "2023",
address = "Toronto, Canada",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2023.acl-long.166",
doi = "10.18653/v1/2023.acl-long.166",
pages = "2952--2969",
abstract = "In the U.S. Congress, legislators can use active and passive cosponsorship to support bills. We show that these two types of cosponsorship are driven by two different motivations: the backing of political colleagues and the backing of the bill{'}s content. To this end, we develop an Encoder+RGCN based model that learns legislator representations from bill texts and speech transcripts. These representations predict active and passive cosponsorship with an F1-score of 0.88.Applying our representations to predict voting decisions, we show that they are interpretable and generalize to unseen tasks.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="russo-etal-2023-helping">
<titleInfo>
<title>Helping a Friend or Supporting a Cause? Disentangling Active and Passive Cosponsorship in the U.S. Congress</title>
</titleInfo>
<name type="personal">
<namePart type="given">Giuseppe</namePart>
<namePart type="family">Russo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Christoph</namePart>
<namePart type="family">Gote</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Laurence</namePart>
<namePart type="family">Brandenberger</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sophia</namePart>
<namePart type="family">Schlosser</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Frank</namePart>
<namePart type="family">Schweitzer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2023-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Anna</namePart>
<namePart type="family">Rogers</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jordan</namePart>
<namePart type="family">Boyd-Graber</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Naoaki</namePart>
<namePart type="family">Okazaki</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Toronto, Canada</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In the U.S. Congress, legislators can use active and passive cosponsorship to support bills. We show that these two types of cosponsorship are driven by two different motivations: the backing of political colleagues and the backing of the bill’s content. To this end, we develop an Encoder+RGCN based model that learns legislator representations from bill texts and speech transcripts. These representations predict active and passive cosponsorship with an F1-score of 0.88.Applying our representations to predict voting decisions, we show that they are interpretable and generalize to unseen tasks.</abstract>
<identifier type="citekey">russo-etal-2023-helping</identifier>
<identifier type="doi">10.18653/v1/2023.acl-long.166</identifier>
<location>
<url>https://aclanthology.org/2023.acl-long.166</url>
</location>
<part>
<date>2023-07</date>
<extent unit="page">
<start>2952</start>
<end>2969</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Helping a Friend or Supporting a Cause? Disentangling Active and Passive Cosponsorship in the U.S. Congress
%A Russo, Giuseppe
%A Gote, Christoph
%A Brandenberger, Laurence
%A Schlosser, Sophia
%A Schweitzer, Frank
%Y Rogers, Anna
%Y Boyd-Graber, Jordan
%Y Okazaki, Naoaki
%S Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
%D 2023
%8 July
%I Association for Computational Linguistics
%C Toronto, Canada
%F russo-etal-2023-helping
%X In the U.S. Congress, legislators can use active and passive cosponsorship to support bills. We show that these two types of cosponsorship are driven by two different motivations: the backing of political colleagues and the backing of the bill’s content. To this end, we develop an Encoder+RGCN based model that learns legislator representations from bill texts and speech transcripts. These representations predict active and passive cosponsorship with an F1-score of 0.88.Applying our representations to predict voting decisions, we show that they are interpretable and generalize to unseen tasks.
%R 10.18653/v1/2023.acl-long.166
%U https://aclanthology.org/2023.acl-long.166
%U https://doi.org/10.18653/v1/2023.acl-long.166
%P 2952-2969
Markdown (Informal)
[Helping a Friend or Supporting a Cause? Disentangling Active and Passive Cosponsorship in the U.S. Congress](https://aclanthology.org/2023.acl-long.166) (Russo et al., ACL 2023)
ACL