Cross-Domain Data Augmentation with Domain-Adaptive Language Modeling for Aspect-Based Sentiment Analysis

Jianfei Yu, Qiankun Zhao, Rui Xia


Abstract
Cross-domain Aspect-Based Sentiment Analysis (ABSA) aims to leverage the useful knowledge from a source domain to identify aspect-sentiment pairs in sentences from a target domain. To tackle the task, several recent works explore a new unsupervised domain adaptation framework, i.e., Cross-Domain Data Augmentation (CDDA), aiming to directly generate much labeled target-domain data based on the labeled source-domain data. However, these CDDA methods still suffer from several issues: 1) preserving many source-specific attributes such as syntactic structures; 2) lack of fluency and coherence; 3) limiting the diversity of generated data. To address these issues, we propose a new cross-domain Data Augmentation approach based on Domain-Adaptive Language Modeling named DA2LM, which contains three stages: 1) assigning pseudo labels to unlabeled target-domain data; 2) unifying the process of token generation and labeling with a Domain-Adaptive Language Model (DALM) to learn the shared context and annotation across domains; 3) using the trained DALM to generate labeled target-domain data. Experiments show that DA2LM consistently outperforms previous feature adaptation and CDDA methods on both ABSA and Aspect Extraction tasks. The source code is publicly released at https://github.com/NUSTM/DALM.
Anthology ID:
2023.acl-long.81
Volume:
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Month:
July
Year:
2023
Address:
Toronto, Canada
Editors:
Anna Rogers, Jordan Boyd-Graber, Naoaki Okazaki
Venue:
ACL
SIG:
Publisher:
Association for Computational Linguistics
Note:
Pages:
1456–1470
Language:
URL:
https://aclanthology.org/2023.acl-long.81
DOI:
10.18653/v1/2023.acl-long.81
Bibkey:
Cite (ACL):
Jianfei Yu, Qiankun Zhao, and Rui Xia. 2023. Cross-Domain Data Augmentation with Domain-Adaptive Language Modeling for Aspect-Based Sentiment Analysis. In Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 1456–1470, Toronto, Canada. Association for Computational Linguistics.
Cite (Informal):
Cross-Domain Data Augmentation with Domain-Adaptive Language Modeling for Aspect-Based Sentiment Analysis (Yu et al., ACL 2023)
Copy Citation:
PDF:
https://aclanthology.org/2023.acl-long.81.pdf
Video:
 https://aclanthology.org/2023.acl-long.81.mp4