@inproceedings{yu-etal-2023-cross,
title = "Cross-Domain Data Augmentation with Domain-Adaptive Language Modeling for Aspect-Based Sentiment Analysis",
author = "Yu, Jianfei and
Zhao, Qiankun and
Xia, Rui",
editor = "Rogers, Anna and
Boyd-Graber, Jordan and
Okazaki, Naoaki",
booktitle = "Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
month = jul,
year = "2023",
address = "Toronto, Canada",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2023.acl-long.81",
doi = "10.18653/v1/2023.acl-long.81",
pages = "1456--1470",
abstract = "Cross-domain Aspect-Based Sentiment Analysis (ABSA) aims to leverage the useful knowledge from a source domain to identify aspect-sentiment pairs in sentences from a target domain. To tackle the task, several recent works explore a new unsupervised domain adaptation framework, i.e., Cross-Domain Data Augmentation (CDDA), aiming to directly generate much labeled target-domain data based on the labeled source-domain data. However, these CDDA methods still suffer from several issues: 1) preserving many source-specific attributes such as syntactic structures; 2) lack of fluency and coherence; 3) limiting the diversity of generated data. To address these issues, we propose a new cross-domain Data Augmentation approach based on Domain-Adaptive Language Modeling named DA$^2$LM, which contains three stages: 1) assigning pseudo labels to unlabeled target-domain data; 2) unifying the process of token generation and labeling with a Domain-Adaptive Language Model (DALM) to learn the shared context and annotation across domains; 3) using the trained DALM to generate labeled target-domain data. Experiments show that DA$^2$LM consistently outperforms previous feature adaptation and CDDA methods on both ABSA and Aspect Extraction tasks. The source code is publicly released at \url{https://github.com/NUSTM/DALM}.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="yu-etal-2023-cross">
<titleInfo>
<title>Cross-Domain Data Augmentation with Domain-Adaptive Language Modeling for Aspect-Based Sentiment Analysis</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jianfei</namePart>
<namePart type="family">Yu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Qiankun</namePart>
<namePart type="family">Zhao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rui</namePart>
<namePart type="family">Xia</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2023-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Anna</namePart>
<namePart type="family">Rogers</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jordan</namePart>
<namePart type="family">Boyd-Graber</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Naoaki</namePart>
<namePart type="family">Okazaki</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Toronto, Canada</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Cross-domain Aspect-Based Sentiment Analysis (ABSA) aims to leverage the useful knowledge from a source domain to identify aspect-sentiment pairs in sentences from a target domain. To tackle the task, several recent works explore a new unsupervised domain adaptation framework, i.e., Cross-Domain Data Augmentation (CDDA), aiming to directly generate much labeled target-domain data based on the labeled source-domain data. However, these CDDA methods still suffer from several issues: 1) preserving many source-specific attributes such as syntactic structures; 2) lack of fluency and coherence; 3) limiting the diversity of generated data. To address these issues, we propose a new cross-domain Data Augmentation approach based on Domain-Adaptive Language Modeling named DA²LM, which contains three stages: 1) assigning pseudo labels to unlabeled target-domain data; 2) unifying the process of token generation and labeling with a Domain-Adaptive Language Model (DALM) to learn the shared context and annotation across domains; 3) using the trained DALM to generate labeled target-domain data. Experiments show that DA²LM consistently outperforms previous feature adaptation and CDDA methods on both ABSA and Aspect Extraction tasks. The source code is publicly released at https://github.com/NUSTM/DALM.</abstract>
<identifier type="citekey">yu-etal-2023-cross</identifier>
<identifier type="doi">10.18653/v1/2023.acl-long.81</identifier>
<location>
<url>https://aclanthology.org/2023.acl-long.81</url>
</location>
<part>
<date>2023-07</date>
<extent unit="page">
<start>1456</start>
<end>1470</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Cross-Domain Data Augmentation with Domain-Adaptive Language Modeling for Aspect-Based Sentiment Analysis
%A Yu, Jianfei
%A Zhao, Qiankun
%A Xia, Rui
%Y Rogers, Anna
%Y Boyd-Graber, Jordan
%Y Okazaki, Naoaki
%S Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
%D 2023
%8 July
%I Association for Computational Linguistics
%C Toronto, Canada
%F yu-etal-2023-cross
%X Cross-domain Aspect-Based Sentiment Analysis (ABSA) aims to leverage the useful knowledge from a source domain to identify aspect-sentiment pairs in sentences from a target domain. To tackle the task, several recent works explore a new unsupervised domain adaptation framework, i.e., Cross-Domain Data Augmentation (CDDA), aiming to directly generate much labeled target-domain data based on the labeled source-domain data. However, these CDDA methods still suffer from several issues: 1) preserving many source-specific attributes such as syntactic structures; 2) lack of fluency and coherence; 3) limiting the diversity of generated data. To address these issues, we propose a new cross-domain Data Augmentation approach based on Domain-Adaptive Language Modeling named DA²LM, which contains three stages: 1) assigning pseudo labels to unlabeled target-domain data; 2) unifying the process of token generation and labeling with a Domain-Adaptive Language Model (DALM) to learn the shared context and annotation across domains; 3) using the trained DALM to generate labeled target-domain data. Experiments show that DA²LM consistently outperforms previous feature adaptation and CDDA methods on both ABSA and Aspect Extraction tasks. The source code is publicly released at https://github.com/NUSTM/DALM.
%R 10.18653/v1/2023.acl-long.81
%U https://aclanthology.org/2023.acl-long.81
%U https://doi.org/10.18653/v1/2023.acl-long.81
%P 1456-1470
Markdown (Informal)
[Cross-Domain Data Augmentation with Domain-Adaptive Language Modeling for Aspect-Based Sentiment Analysis](https://aclanthology.org/2023.acl-long.81) (Yu et al., ACL 2023)
ACL