融合预训练模型的端到端语音命名实体识别(End-to-End Speech Named Entity Recognition with Pretrained Models)

Tianwei Lan (兰天伟), Yuhang Guo (郭宇航)


Abstract
“语音命名实体识别(Speech Named Entity Recognition, SNER)旨在从音频中识别出语音中命名实体的边界、种类和内容,是口语理解中的重要任务之一。直接从语音中识别出命名实体,即端到端方法是SNER目前的主流方法。但是语音命名实体识别的训练语料较少,端到端模型存在以下问题:(1)在跨领域识别的情况下模型的识别效果会有大幅度的下降。(2)模型在识别过程中会因同音词等现象对命名实体漏标、错标,进一步影响命名实体识别的准确性。针对问题(1),本文提出使用预训练实体识别模型构建语音实体识别的训练语料。针对问题(2),本文提出采用预训练语言模型对语音命名实体识别的N-BEST列表重打分,利用预训练模型中的外部知识帮助端到端模型挑选出最好的结果。为了验证模型的领域迁移能力,本文标注了少样本口语型数据集MAGICDATA-NER,在此数据上的实验表明,本文提出的方法相对于传统方法在F1值上有43.29%的提高。”
Anthology ID:
2023.ccl-1.16
Volume:
Proceedings of the 22nd Chinese National Conference on Computational Linguistics
Month:
August
Year:
2023
Address:
Harbin, China
Editors:
Maosong Sun, Bing Qin, Xipeng Qiu, Jing Jiang, Xianpei Han
Venue:
CCL
SIG:
Publisher:
Chinese Information Processing Society of China
Note:
Pages:
174–185
Language:
Chinese
URL:
https://aclanthology.org/2023.ccl-1.16
DOI:
Bibkey:
Cite (ACL):
Tianwei Lan and Yuhang Guo. 2023. 融合预训练模型的端到端语音命名实体识别(End-to-End Speech Named Entity Recognition with Pretrained Models). In Proceedings of the 22nd Chinese National Conference on Computational Linguistics, pages 174–185, Harbin, China. Chinese Information Processing Society of China.
Cite (Informal):
融合预训练模型的端到端语音命名实体识别(End-to-End Speech Named Entity Recognition with Pretrained Models) (Lan & Guo, CCL 2023)
Copy Citation:
PDF:
https://aclanthology.org/2023.ccl-1.16.pdf