@inproceedings{martinez-lorenzo-etal-2023-cross,
title = "Cross-lingual {AMR} Aligner: Paying Attention to Cross-Attention",
author = "Mart{\'\i}nez Lorenzo, Abelardo Carlos and
Huguet Cabot, Pere Llu{\'\i}s and
Navigli, Roberto",
editor = "Rogers, Anna and
Boyd-Graber, Jordan and
Okazaki, Naoaki",
booktitle = "Findings of the Association for Computational Linguistics: ACL 2023",
month = jul,
year = "2023",
address = "Toronto, Canada",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2023.findings-acl.109",
doi = "10.18653/v1/2023.findings-acl.109",
pages = "1726--1742",
abstract = "This paper introduces a novel aligner for Abstract Meaning Representation (AMR) graphs that can scale cross-lingually, and is thus capable of aligning units and spans in sentences of different languages. Our approach leverages modern Transformer-based parsers, which inherently encode alignment information in their cross-attention weights, allowing us to extract this information during parsing. This eliminates the need for English-specific rules or the Expectation Maximization (EM) algorithm that have been used in previous approaches. In addition, we propose a guided supervised method using alignment to further enhance the performance of our aligner. We achieve state-of-the-art results in the benchmarks for AMR alignment and demonstrate our aligner{'}s ability to obtain them across multiple languages. Our code will be available at [\url{https://www.github.com/babelscape/AMR-alignment}](\url{https://www.github.com/babelscape/AMR-alignment}).",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="martinez-lorenzo-etal-2023-cross">
<titleInfo>
<title>Cross-lingual AMR Aligner: Paying Attention to Cross-Attention</title>
</titleInfo>
<name type="personal">
<namePart type="given">Abelardo</namePart>
<namePart type="given">Carlos</namePart>
<namePart type="family">Martínez Lorenzo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Pere</namePart>
<namePart type="given">Lluís</namePart>
<namePart type="family">Huguet Cabot</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Roberto</namePart>
<namePart type="family">Navigli</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2023-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: ACL 2023</title>
</titleInfo>
<name type="personal">
<namePart type="given">Anna</namePart>
<namePart type="family">Rogers</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jordan</namePart>
<namePart type="family">Boyd-Graber</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Naoaki</namePart>
<namePart type="family">Okazaki</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Toronto, Canada</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper introduces a novel aligner for Abstract Meaning Representation (AMR) graphs that can scale cross-lingually, and is thus capable of aligning units and spans in sentences of different languages. Our approach leverages modern Transformer-based parsers, which inherently encode alignment information in their cross-attention weights, allowing us to extract this information during parsing. This eliminates the need for English-specific rules or the Expectation Maximization (EM) algorithm that have been used in previous approaches. In addition, we propose a guided supervised method using alignment to further enhance the performance of our aligner. We achieve state-of-the-art results in the benchmarks for AMR alignment and demonstrate our aligner’s ability to obtain them across multiple languages. Our code will be available at [https://www.github.com/babelscape/AMR-alignment](https://www.github.com/babelscape/AMR-alignment).</abstract>
<identifier type="citekey">martinez-lorenzo-etal-2023-cross</identifier>
<identifier type="doi">10.18653/v1/2023.findings-acl.109</identifier>
<location>
<url>https://aclanthology.org/2023.findings-acl.109</url>
</location>
<part>
<date>2023-07</date>
<extent unit="page">
<start>1726</start>
<end>1742</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Cross-lingual AMR Aligner: Paying Attention to Cross-Attention
%A Martínez Lorenzo, Abelardo Carlos
%A Huguet Cabot, Pere Lluís
%A Navigli, Roberto
%Y Rogers, Anna
%Y Boyd-Graber, Jordan
%Y Okazaki, Naoaki
%S Findings of the Association for Computational Linguistics: ACL 2023
%D 2023
%8 July
%I Association for Computational Linguistics
%C Toronto, Canada
%F martinez-lorenzo-etal-2023-cross
%X This paper introduces a novel aligner for Abstract Meaning Representation (AMR) graphs that can scale cross-lingually, and is thus capable of aligning units and spans in sentences of different languages. Our approach leverages modern Transformer-based parsers, which inherently encode alignment information in their cross-attention weights, allowing us to extract this information during parsing. This eliminates the need for English-specific rules or the Expectation Maximization (EM) algorithm that have been used in previous approaches. In addition, we propose a guided supervised method using alignment to further enhance the performance of our aligner. We achieve state-of-the-art results in the benchmarks for AMR alignment and demonstrate our aligner’s ability to obtain them across multiple languages. Our code will be available at [https://www.github.com/babelscape/AMR-alignment](https://www.github.com/babelscape/AMR-alignment).
%R 10.18653/v1/2023.findings-acl.109
%U https://aclanthology.org/2023.findings-acl.109
%U https://doi.org/10.18653/v1/2023.findings-acl.109
%P 1726-1742
Markdown (Informal)
[Cross-lingual AMR Aligner: Paying Attention to Cross-Attention](https://aclanthology.org/2023.findings-acl.109) (Martínez Lorenzo et al., Findings 2023)
ACL