@inproceedings{hosseini-caragea-2023-semi,
title = "Semi-Supervised Domain Adaptation for Emotion-Related Tasks",
author = "Hosseini, Mahshid and
Caragea, Cornelia",
editor = "Rogers, Anna and
Boyd-Graber, Jordan and
Okazaki, Naoaki",
booktitle = "Findings of the Association for Computational Linguistics: ACL 2023",
month = jul,
year = "2023",
address = "Toronto, Canada",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2023.findings-acl.333",
doi = "10.18653/v1/2023.findings-acl.333",
pages = "5402--5410",
abstract = "Semi-supervised domain adaptation (SSDA) adopts a model trained from a label-rich source domain to a new but related domain with a few labels of target data. It is shown that, in an SSDA setting, a simple combination of domain adaptation (DA) with semi-supervised learning (SSL) techniques often fails to effectively utilize the target supervision and cannot address distribution shifts across different domains due to the training data bias toward the source-labeled samples. In this paper, inspired by the co-learning of multiple classifiers for the computer vision tasks, we propose to decompose the SSDA framework for emotion-related tasks into two subcomponents of unsupervised domain adaptation (UDA) from the source to the target domain and semi-supervised learning (SSL) in the target domain where the two models iteratively teach each other by interchanging their high confident predictions. We further propose a novel data cartography-based regularization technique for pseudo-label denoising that employs training dynamics to further hone our models{'} performance. We publicly release our code.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="hosseini-caragea-2023-semi">
<titleInfo>
<title>Semi-Supervised Domain Adaptation for Emotion-Related Tasks</title>
</titleInfo>
<name type="personal">
<namePart type="given">Mahshid</namePart>
<namePart type="family">Hosseini</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Cornelia</namePart>
<namePart type="family">Caragea</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2023-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: ACL 2023</title>
</titleInfo>
<name type="personal">
<namePart type="given">Anna</namePart>
<namePart type="family">Rogers</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jordan</namePart>
<namePart type="family">Boyd-Graber</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Naoaki</namePart>
<namePart type="family">Okazaki</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Toronto, Canada</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Semi-supervised domain adaptation (SSDA) adopts a model trained from a label-rich source domain to a new but related domain with a few labels of target data. It is shown that, in an SSDA setting, a simple combination of domain adaptation (DA) with semi-supervised learning (SSL) techniques often fails to effectively utilize the target supervision and cannot address distribution shifts across different domains due to the training data bias toward the source-labeled samples. In this paper, inspired by the co-learning of multiple classifiers for the computer vision tasks, we propose to decompose the SSDA framework for emotion-related tasks into two subcomponents of unsupervised domain adaptation (UDA) from the source to the target domain and semi-supervised learning (SSL) in the target domain where the two models iteratively teach each other by interchanging their high confident predictions. We further propose a novel data cartography-based regularization technique for pseudo-label denoising that employs training dynamics to further hone our models’ performance. We publicly release our code.</abstract>
<identifier type="citekey">hosseini-caragea-2023-semi</identifier>
<identifier type="doi">10.18653/v1/2023.findings-acl.333</identifier>
<location>
<url>https://aclanthology.org/2023.findings-acl.333</url>
</location>
<part>
<date>2023-07</date>
<extent unit="page">
<start>5402</start>
<end>5410</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Semi-Supervised Domain Adaptation for Emotion-Related Tasks
%A Hosseini, Mahshid
%A Caragea, Cornelia
%Y Rogers, Anna
%Y Boyd-Graber, Jordan
%Y Okazaki, Naoaki
%S Findings of the Association for Computational Linguistics: ACL 2023
%D 2023
%8 July
%I Association for Computational Linguistics
%C Toronto, Canada
%F hosseini-caragea-2023-semi
%X Semi-supervised domain adaptation (SSDA) adopts a model trained from a label-rich source domain to a new but related domain with a few labels of target data. It is shown that, in an SSDA setting, a simple combination of domain adaptation (DA) with semi-supervised learning (SSL) techniques often fails to effectively utilize the target supervision and cannot address distribution shifts across different domains due to the training data bias toward the source-labeled samples. In this paper, inspired by the co-learning of multiple classifiers for the computer vision tasks, we propose to decompose the SSDA framework for emotion-related tasks into two subcomponents of unsupervised domain adaptation (UDA) from the source to the target domain and semi-supervised learning (SSL) in the target domain where the two models iteratively teach each other by interchanging their high confident predictions. We further propose a novel data cartography-based regularization technique for pseudo-label denoising that employs training dynamics to further hone our models’ performance. We publicly release our code.
%R 10.18653/v1/2023.findings-acl.333
%U https://aclanthology.org/2023.findings-acl.333
%U https://doi.org/10.18653/v1/2023.findings-acl.333
%P 5402-5410
Markdown (Informal)
[Semi-Supervised Domain Adaptation for Emotion-Related Tasks](https://aclanthology.org/2023.findings-acl.333) (Hosseini & Caragea, Findings 2023)
ACL