@inproceedings{papalampidi-lapata-2023-hierarchical3d,
title = "{H}ierarchical3{D} Adapters for Long Video-to-text Summarization",
author = "Papalampidi, Pinelopi and
Lapata, Mirella",
editor = "Vlachos, Andreas and
Augenstein, Isabelle",
booktitle = "Findings of the Association for Computational Linguistics: EACL 2023",
month = may,
year = "2023",
address = "Dubrovnik, Croatia",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2023.findings-eacl.96",
doi = "10.18653/v1/2023.findings-eacl.96",
pages = "1297--1320",
abstract = "In this paper, we focus on video-to-text summarization and investigate how to best utilize multimodal information for summarizing long inputs (e.g., an hour-long TV show) into long outputs (e.g., a multi-sentence summary). We extend SummScreen (Chen et al., 2022), a dialogue summarization dataset consisting of transcripts of TV episodes with reference summaries, and create a multimodal variant by collecting corresponding full-length videos. We incorporate multimodal information into a pre-trained textual summarizer efficiently using adapter modules augmented with a hierarchical structure while tuning only 3.8{\%} of model parameters. Our experiments demonstrate that multimodal information offers superior performance over more memory-heavy and fully fine-tuned textual summarization methods.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="papalampidi-lapata-2023-hierarchical3d">
<titleInfo>
<title>Hierarchical3D Adapters for Long Video-to-text Summarization</title>
</titleInfo>
<name type="personal">
<namePart type="given">Pinelopi</namePart>
<namePart type="family">Papalampidi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mirella</namePart>
<namePart type="family">Lapata</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2023-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: EACL 2023</title>
</titleInfo>
<name type="personal">
<namePart type="given">Andreas</namePart>
<namePart type="family">Vlachos</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Isabelle</namePart>
<namePart type="family">Augenstein</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Dubrovnik, Croatia</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In this paper, we focus on video-to-text summarization and investigate how to best utilize multimodal information for summarizing long inputs (e.g., an hour-long TV show) into long outputs (e.g., a multi-sentence summary). We extend SummScreen (Chen et al., 2022), a dialogue summarization dataset consisting of transcripts of TV episodes with reference summaries, and create a multimodal variant by collecting corresponding full-length videos. We incorporate multimodal information into a pre-trained textual summarizer efficiently using adapter modules augmented with a hierarchical structure while tuning only 3.8% of model parameters. Our experiments demonstrate that multimodal information offers superior performance over more memory-heavy and fully fine-tuned textual summarization methods.</abstract>
<identifier type="citekey">papalampidi-lapata-2023-hierarchical3d</identifier>
<identifier type="doi">10.18653/v1/2023.findings-eacl.96</identifier>
<location>
<url>https://aclanthology.org/2023.findings-eacl.96</url>
</location>
<part>
<date>2023-05</date>
<extent unit="page">
<start>1297</start>
<end>1320</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Hierarchical3D Adapters for Long Video-to-text Summarization
%A Papalampidi, Pinelopi
%A Lapata, Mirella
%Y Vlachos, Andreas
%Y Augenstein, Isabelle
%S Findings of the Association for Computational Linguistics: EACL 2023
%D 2023
%8 May
%I Association for Computational Linguistics
%C Dubrovnik, Croatia
%F papalampidi-lapata-2023-hierarchical3d
%X In this paper, we focus on video-to-text summarization and investigate how to best utilize multimodal information for summarizing long inputs (e.g., an hour-long TV show) into long outputs (e.g., a multi-sentence summary). We extend SummScreen (Chen et al., 2022), a dialogue summarization dataset consisting of transcripts of TV episodes with reference summaries, and create a multimodal variant by collecting corresponding full-length videos. We incorporate multimodal information into a pre-trained textual summarizer efficiently using adapter modules augmented with a hierarchical structure while tuning only 3.8% of model parameters. Our experiments demonstrate that multimodal information offers superior performance over more memory-heavy and fully fine-tuned textual summarization methods.
%R 10.18653/v1/2023.findings-eacl.96
%U https://aclanthology.org/2023.findings-eacl.96
%U https://doi.org/10.18653/v1/2023.findings-eacl.96
%P 1297-1320
Markdown (Informal)
[Hierarchical3D Adapters for Long Video-to-text Summarization](https://aclanthology.org/2023.findings-eacl.96) (Papalampidi & Lapata, Findings 2023)
ACL