@inproceedings{hezam-stevenson-2023-combining,
title = "Combining Counting Processes and Classification Improves a Stopping Rule for Technology Assisted Review",
author = "Bin-Hezam, Reem and
Stevenson, Mark",
editor = "Bouamor, Houda and
Pino, Juan and
Bali, Kalika",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2023",
month = dec,
year = "2023",
address = "Singapore",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2023.findings-emnlp.171",
doi = "10.18653/v1/2023.findings-emnlp.171",
pages = "2603--2609",
abstract = "Technology Assisted Review (TAR) stopping rules aim to reduce the cost of manually assessing documents for relevance by minimising the number of documents that need to be examined to ensure a desired level of recall. This paper extends an effective stopping rule using information derived from a text classifier that can be trained without the need for any additional annotation. Experiments on multiple data sets (CLEF e-Health, TREC Total Recall, TREC Legal and RCV1) showed that the proposed approach consistently improves performance and outperforms several alternative methods.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="hezam-stevenson-2023-combining">
<titleInfo>
<title>Combining Counting Processes and Classification Improves a Stopping Rule for Technology Assisted Review</title>
</titleInfo>
<name type="personal">
<namePart type="given">Reem</namePart>
<namePart type="family">Bin-Hezam</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mark</namePart>
<namePart type="family">Stevenson</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2023-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: EMNLP 2023</title>
</titleInfo>
<name type="personal">
<namePart type="given">Houda</namePart>
<namePart type="family">Bouamor</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Juan</namePart>
<namePart type="family">Pino</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kalika</namePart>
<namePart type="family">Bali</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Singapore</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Technology Assisted Review (TAR) stopping rules aim to reduce the cost of manually assessing documents for relevance by minimising the number of documents that need to be examined to ensure a desired level of recall. This paper extends an effective stopping rule using information derived from a text classifier that can be trained without the need for any additional annotation. Experiments on multiple data sets (CLEF e-Health, TREC Total Recall, TREC Legal and RCV1) showed that the proposed approach consistently improves performance and outperforms several alternative methods.</abstract>
<identifier type="citekey">hezam-stevenson-2023-combining</identifier>
<identifier type="doi">10.18653/v1/2023.findings-emnlp.171</identifier>
<location>
<url>https://aclanthology.org/2023.findings-emnlp.171</url>
</location>
<part>
<date>2023-12</date>
<extent unit="page">
<start>2603</start>
<end>2609</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Combining Counting Processes and Classification Improves a Stopping Rule for Technology Assisted Review
%A Bin-Hezam, Reem
%A Stevenson, Mark
%Y Bouamor, Houda
%Y Pino, Juan
%Y Bali, Kalika
%S Findings of the Association for Computational Linguistics: EMNLP 2023
%D 2023
%8 December
%I Association for Computational Linguistics
%C Singapore
%F hezam-stevenson-2023-combining
%X Technology Assisted Review (TAR) stopping rules aim to reduce the cost of manually assessing documents for relevance by minimising the number of documents that need to be examined to ensure a desired level of recall. This paper extends an effective stopping rule using information derived from a text classifier that can be trained without the need for any additional annotation. Experiments on multiple data sets (CLEF e-Health, TREC Total Recall, TREC Legal and RCV1) showed that the proposed approach consistently improves performance and outperforms several alternative methods.
%R 10.18653/v1/2023.findings-emnlp.171
%U https://aclanthology.org/2023.findings-emnlp.171
%U https://doi.org/10.18653/v1/2023.findings-emnlp.171
%P 2603-2609
Markdown (Informal)
[Combining Counting Processes and Classification Improves a Stopping Rule for Technology Assisted Review](https://aclanthology.org/2023.findings-emnlp.171) (Bin-Hezam & Stevenson, Findings 2023)
ACL