@inproceedings{wolska-etal-2023-trigger,
title = "Trigger Warnings: Bootstrapping a Violence Detector for Fan Fiction",
author = {Wolska, Magdalena and
Wiegmann, Matti and
Schr{\"o}der, Christopher and
Borchardt, Ole and
Stein, Benno and
Potthast, Martin},
editor = "Bouamor, Houda and
Pino, Juan and
Bali, Kalika",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2023",
month = dec,
year = "2023",
address = "Singapore",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2023.findings-emnlp.41",
doi = "10.18653/v1/2023.findings-emnlp.41",
pages = "569--576",
abstract = "We present the first dataset and evaluation results on a newly defined task: assigning trigger warnings. We introduce a labeled corpus of narrative fiction from Archive of Our Own (AO3), a popular fan fiction site, and define a document-level classification task to determine whether or not to assign a trigger warning to an English story. We focus on the most commonly assigned trigger type {``}violence{'} using the warning labels provided by AO3 authors as ground-truth labels. We trained SVM, BERT, and Longfomer models on three datasets sampled from the corpus and achieve F1 scores between 0.8 and 0.9, indicating that assigning trigger warnings for violence is feasible.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="wolska-etal-2023-trigger">
<titleInfo>
<title>Trigger Warnings: Bootstrapping a Violence Detector for Fan Fiction</title>
</titleInfo>
<name type="personal">
<namePart type="given">Magdalena</namePart>
<namePart type="family">Wolska</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Matti</namePart>
<namePart type="family">Wiegmann</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Christopher</namePart>
<namePart type="family">Schröder</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ole</namePart>
<namePart type="family">Borchardt</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Benno</namePart>
<namePart type="family">Stein</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Martin</namePart>
<namePart type="family">Potthast</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2023-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: EMNLP 2023</title>
</titleInfo>
<name type="personal">
<namePart type="given">Houda</namePart>
<namePart type="family">Bouamor</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Juan</namePart>
<namePart type="family">Pino</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kalika</namePart>
<namePart type="family">Bali</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Singapore</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We present the first dataset and evaluation results on a newly defined task: assigning trigger warnings. We introduce a labeled corpus of narrative fiction from Archive of Our Own (AO3), a popular fan fiction site, and define a document-level classification task to determine whether or not to assign a trigger warning to an English story. We focus on the most commonly assigned trigger type “violence’ using the warning labels provided by AO3 authors as ground-truth labels. We trained SVM, BERT, and Longfomer models on three datasets sampled from the corpus and achieve F1 scores between 0.8 and 0.9, indicating that assigning trigger warnings for violence is feasible.</abstract>
<identifier type="citekey">wolska-etal-2023-trigger</identifier>
<identifier type="doi">10.18653/v1/2023.findings-emnlp.41</identifier>
<location>
<url>https://aclanthology.org/2023.findings-emnlp.41</url>
</location>
<part>
<date>2023-12</date>
<extent unit="page">
<start>569</start>
<end>576</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Trigger Warnings: Bootstrapping a Violence Detector for Fan Fiction
%A Wolska, Magdalena
%A Wiegmann, Matti
%A Schröder, Christopher
%A Borchardt, Ole
%A Stein, Benno
%A Potthast, Martin
%Y Bouamor, Houda
%Y Pino, Juan
%Y Bali, Kalika
%S Findings of the Association for Computational Linguistics: EMNLP 2023
%D 2023
%8 December
%I Association for Computational Linguistics
%C Singapore
%F wolska-etal-2023-trigger
%X We present the first dataset and evaluation results on a newly defined task: assigning trigger warnings. We introduce a labeled corpus of narrative fiction from Archive of Our Own (AO3), a popular fan fiction site, and define a document-level classification task to determine whether or not to assign a trigger warning to an English story. We focus on the most commonly assigned trigger type “violence’ using the warning labels provided by AO3 authors as ground-truth labels. We trained SVM, BERT, and Longfomer models on three datasets sampled from the corpus and achieve F1 scores between 0.8 and 0.9, indicating that assigning trigger warnings for violence is feasible.
%R 10.18653/v1/2023.findings-emnlp.41
%U https://aclanthology.org/2023.findings-emnlp.41
%U https://doi.org/10.18653/v1/2023.findings-emnlp.41
%P 569-576
Markdown (Informal)
[Trigger Warnings: Bootstrapping a Violence Detector for Fan Fiction](https://aclanthology.org/2023.findings-emnlp.41) (Wolska et al., Findings 2023)
ACL