@inproceedings{kobbe-etal-2023-effect,
title = "Effect Graph: Effect Relation Extraction for Explanation Generation",
author = "Kobbe, Jonathan and
Hulpu{\textcommabelow{s}}, Ioana and
Stuckenschmidt, Heiner",
editor = "Dalvi Mishra, Bhavana and
Durrett, Greg and
Jansen, Peter and
Neves Ribeiro, Danilo and
Wei, Jason",
booktitle = "Proceedings of the 1st Workshop on Natural Language Reasoning and Structured Explanations (NLRSE)",
month = jun,
year = "2023",
address = "Toronto, Canada",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2023.nlrse-1.9",
doi = "10.18653/v1/2023.nlrse-1.9",
pages = "116--127",
abstract = "Argumentation is an important means of communication. For describing especially arguments about consequences, the notion of effect relations has been introduced recently. We propose a method to extract effect relations from large text resources and apply it on encyclopedic and argumentative texts. By connecting the extracted relations, we generate a knowledge graph which we call effect graph. For evaluating the effect graph, we perform crowd and expert annotations and create a novel dataset. We demonstrate a possible use case of the effect graph by proposing a method for explaining arguments from consequences.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="kobbe-etal-2023-effect">
<titleInfo>
<title>Effect Graph: Effect Relation Extraction for Explanation Generation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jonathan</namePart>
<namePart type="family">Kobbe</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ioana</namePart>
<namePart type="family">Hulpu\textcommabelows</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Heiner</namePart>
<namePart type="family">Stuckenschmidt</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2023-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 1st Workshop on Natural Language Reasoning and Structured Explanations (NLRSE)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Bhavana</namePart>
<namePart type="family">Dalvi Mishra</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Greg</namePart>
<namePart type="family">Durrett</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Peter</namePart>
<namePart type="family">Jansen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Danilo</namePart>
<namePart type="family">Neves Ribeiro</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jason</namePart>
<namePart type="family">Wei</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Toronto, Canada</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Argumentation is an important means of communication. For describing especially arguments about consequences, the notion of effect relations has been introduced recently. We propose a method to extract effect relations from large text resources and apply it on encyclopedic and argumentative texts. By connecting the extracted relations, we generate a knowledge graph which we call effect graph. For evaluating the effect graph, we perform crowd and expert annotations and create a novel dataset. We demonstrate a possible use case of the effect graph by proposing a method for explaining arguments from consequences.</abstract>
<identifier type="citekey">kobbe-etal-2023-effect</identifier>
<identifier type="doi">10.18653/v1/2023.nlrse-1.9</identifier>
<location>
<url>https://aclanthology.org/2023.nlrse-1.9</url>
</location>
<part>
<date>2023-06</date>
<extent unit="page">
<start>116</start>
<end>127</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Effect Graph: Effect Relation Extraction for Explanation Generation
%A Kobbe, Jonathan
%A Hulpu\textcommabelows, Ioana
%A Stuckenschmidt, Heiner
%Y Dalvi Mishra, Bhavana
%Y Durrett, Greg
%Y Jansen, Peter
%Y Neves Ribeiro, Danilo
%Y Wei, Jason
%S Proceedings of the 1st Workshop on Natural Language Reasoning and Structured Explanations (NLRSE)
%D 2023
%8 June
%I Association for Computational Linguistics
%C Toronto, Canada
%F kobbe-etal-2023-effect
%X Argumentation is an important means of communication. For describing especially arguments about consequences, the notion of effect relations has been introduced recently. We propose a method to extract effect relations from large text resources and apply it on encyclopedic and argumentative texts. By connecting the extracted relations, we generate a knowledge graph which we call effect graph. For evaluating the effect graph, we perform crowd and expert annotations and create a novel dataset. We demonstrate a possible use case of the effect graph by proposing a method for explaining arguments from consequences.
%R 10.18653/v1/2023.nlrse-1.9
%U https://aclanthology.org/2023.nlrse-1.9
%U https://doi.org/10.18653/v1/2023.nlrse-1.9
%P 116-127
Markdown (Informal)
[Effect Graph: Effect Relation Extraction for Explanation Generation](https://aclanthology.org/2023.nlrse-1.9) (Kobbe et al., NLRSE 2023)
ACL