@inproceedings{li-etal-2024-sprout,
title = "Sprout: Green Generative {AI} with Carbon-Efficient {LLM} Inference",
author = "Li, Baolin and
Jiang, Yankai and
Gadepally, Vijay and
Tiwari, Devesh",
editor = "Al-Onaizan, Yaser and
Bansal, Mohit and
Chen, Yun-Nung",
booktitle = "Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing",
month = nov,
year = "2024",
address = "Miami, Florida, USA",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.emnlp-main.1215",
pages = "21799--21813",
abstract = "The rapid advancement of generative AI has heightened environmental concerns, particularly regarding carbon emissions. Our framework, Sprout, addresses these challenges by reducing the carbon footprint of inference in large language models (LLMs). Sprout introduces {``}generation directives{''} to guide the autoregressive generation process, achieving a balance between ecological sustainability and high-quality outputs. By employing a strategic optimizer for directive assignment and a novel offline quality evaluator, Sprout reduces the carbon footprint of generative LLM inference by over 40{\%} in real-world evaluations, using the Llama model and global electricity grid data. This work is crucial as the rising interest in inference time compute scaling laws amplifies environmental concerns, emphasizing the need for eco-friendly AI solutions.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="li-etal-2024-sprout">
<titleInfo>
<title>Sprout: Green Generative AI with Carbon-Efficient LLM Inference</title>
</titleInfo>
<name type="personal">
<namePart type="given">Baolin</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yankai</namePart>
<namePart type="family">Jiang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vijay</namePart>
<namePart type="family">Gadepally</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Devesh</namePart>
<namePart type="family">Tiwari</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yaser</namePart>
<namePart type="family">Al-Onaizan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mohit</namePart>
<namePart type="family">Bansal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yun-Nung</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Miami, Florida, USA</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>The rapid advancement of generative AI has heightened environmental concerns, particularly regarding carbon emissions. Our framework, Sprout, addresses these challenges by reducing the carbon footprint of inference in large language models (LLMs). Sprout introduces “generation directives” to guide the autoregressive generation process, achieving a balance between ecological sustainability and high-quality outputs. By employing a strategic optimizer for directive assignment and a novel offline quality evaluator, Sprout reduces the carbon footprint of generative LLM inference by over 40% in real-world evaluations, using the Llama model and global electricity grid data. This work is crucial as the rising interest in inference time compute scaling laws amplifies environmental concerns, emphasizing the need for eco-friendly AI solutions.</abstract>
<identifier type="citekey">li-etal-2024-sprout</identifier>
<location>
<url>https://aclanthology.org/2024.emnlp-main.1215</url>
</location>
<part>
<date>2024-11</date>
<extent unit="page">
<start>21799</start>
<end>21813</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Sprout: Green Generative AI with Carbon-Efficient LLM Inference
%A Li, Baolin
%A Jiang, Yankai
%A Gadepally, Vijay
%A Tiwari, Devesh
%Y Al-Onaizan, Yaser
%Y Bansal, Mohit
%Y Chen, Yun-Nung
%S Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
%D 2024
%8 November
%I Association for Computational Linguistics
%C Miami, Florida, USA
%F li-etal-2024-sprout
%X The rapid advancement of generative AI has heightened environmental concerns, particularly regarding carbon emissions. Our framework, Sprout, addresses these challenges by reducing the carbon footprint of inference in large language models (LLMs). Sprout introduces “generation directives” to guide the autoregressive generation process, achieving a balance between ecological sustainability and high-quality outputs. By employing a strategic optimizer for directive assignment and a novel offline quality evaluator, Sprout reduces the carbon footprint of generative LLM inference by over 40% in real-world evaluations, using the Llama model and global electricity grid data. This work is crucial as the rising interest in inference time compute scaling laws amplifies environmental concerns, emphasizing the need for eco-friendly AI solutions.
%U https://aclanthology.org/2024.emnlp-main.1215
%P 21799-21813
Markdown (Informal)
[Sprout: Green Generative AI with Carbon-Efficient LLM Inference](https://aclanthology.org/2024.emnlp-main.1215) (Li et al., EMNLP 2024)
ACL