@inproceedings{li-etal-2024-coevol,
title = "{C}o{E}vol: Constructing Better Responses for Instruction Finetuning through Multi-Agent Cooperation",
author = "Li, Renhao and
Tan, Minghuan and
Wong, Derek and
Yang, Min",
editor = "Al-Onaizan, Yaser and
Bansal, Mohit and
Chen, Yun-Nung",
booktitle = "Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing",
month = nov,
year = "2024",
address = "Miami, Florida, USA",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.emnlp-main.271",
pages = "4703--4721",
abstract = "In recent years, instruction fine-tuning (IFT) on large language models (LLMs) has garnered considerable attention to enhance model performance on unseen tasks. Attempts have been made on automatic construction and effective selection for IFT data. However, we posit that previous methods have not fully harnessed the potential of LLMs for enhancing data quality. The responses within IFT data could be further enhanced by leveraging the capabilities of LLMs themselves.In this paper, we propose CoEvol, an LLM-based multi-agent cooperation framework for the improvement of responses for instructions. To effectively refine the responses, we develop an iterative framework following a {\_}debate-advise-edit-judge{\_} paradigm. A two-stage multi-agent debate strategy is further devised to ensure the diversity and reliability of editing suggestions within the framework. Empirically, models equipped with CoEvol outperform competitive baselines evaluated by MT-Bench and AlpacaEval, demonstrating its effectiveness in enhancing instruction-following capabilities for LLMs.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="li-etal-2024-coevol">
<titleInfo>
<title>CoEvol: Constructing Better Responses for Instruction Finetuning through Multi-Agent Cooperation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Renhao</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Minghuan</namePart>
<namePart type="family">Tan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Derek</namePart>
<namePart type="family">Wong</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Min</namePart>
<namePart type="family">Yang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yaser</namePart>
<namePart type="family">Al-Onaizan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mohit</namePart>
<namePart type="family">Bansal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yun-Nung</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Miami, Florida, USA</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In recent years, instruction fine-tuning (IFT) on large language models (LLMs) has garnered considerable attention to enhance model performance on unseen tasks. Attempts have been made on automatic construction and effective selection for IFT data. However, we posit that previous methods have not fully harnessed the potential of LLMs for enhancing data quality. The responses within IFT data could be further enhanced by leveraging the capabilities of LLMs themselves.In this paper, we propose CoEvol, an LLM-based multi-agent cooperation framework for the improvement of responses for instructions. To effectively refine the responses, we develop an iterative framework following a _debate-advise-edit-judge_ paradigm. A two-stage multi-agent debate strategy is further devised to ensure the diversity and reliability of editing suggestions within the framework. Empirically, models equipped with CoEvol outperform competitive baselines evaluated by MT-Bench and AlpacaEval, demonstrating its effectiveness in enhancing instruction-following capabilities for LLMs.</abstract>
<identifier type="citekey">li-etal-2024-coevol</identifier>
<location>
<url>https://aclanthology.org/2024.emnlp-main.271</url>
</location>
<part>
<date>2024-11</date>
<extent unit="page">
<start>4703</start>
<end>4721</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T CoEvol: Constructing Better Responses for Instruction Finetuning through Multi-Agent Cooperation
%A Li, Renhao
%A Tan, Minghuan
%A Wong, Derek
%A Yang, Min
%Y Al-Onaizan, Yaser
%Y Bansal, Mohit
%Y Chen, Yun-Nung
%S Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
%D 2024
%8 November
%I Association for Computational Linguistics
%C Miami, Florida, USA
%F li-etal-2024-coevol
%X In recent years, instruction fine-tuning (IFT) on large language models (LLMs) has garnered considerable attention to enhance model performance on unseen tasks. Attempts have been made on automatic construction and effective selection for IFT data. However, we posit that previous methods have not fully harnessed the potential of LLMs for enhancing data quality. The responses within IFT data could be further enhanced by leveraging the capabilities of LLMs themselves.In this paper, we propose CoEvol, an LLM-based multi-agent cooperation framework for the improvement of responses for instructions. To effectively refine the responses, we develop an iterative framework following a _debate-advise-edit-judge_ paradigm. A two-stage multi-agent debate strategy is further devised to ensure the diversity and reliability of editing suggestions within the framework. Empirically, models equipped with CoEvol outperform competitive baselines evaluated by MT-Bench and AlpacaEval, demonstrating its effectiveness in enhancing instruction-following capabilities for LLMs.
%U https://aclanthology.org/2024.emnlp-main.271
%P 4703-4721
Markdown (Informal)
[CoEvol: Constructing Better Responses for Instruction Finetuning through Multi-Agent Cooperation](https://aclanthology.org/2024.emnlp-main.271) (Li et al., EMNLP 2024)
ACL