@inproceedings{hong-etal-2024-orpo,
title = "{ORPO}: Monolithic Preference Optimization without Reference Model",
author = "Hong, Jiwoo and
Lee, Noah and
Thorne, James",
editor = "Al-Onaizan, Yaser and
Bansal, Mohit and
Chen, Yun-Nung",
booktitle = "Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing",
month = nov,
year = "2024",
address = "Miami, Florida, USA",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.emnlp-main.626",
pages = "11170--11189",
abstract = "While recent preference alignment algorithms for language models have demonstrated promising results, supervised fine-tuning (SFT) remains imperative for achieving successful convergence. In this paper, we revisit SFT in the context of preference alignment, emphasizing that a minor penalty for the disfavored style is sufficient for preference alignment. Building on this foundation, we introduce a straightforward reference model-free monolithic odds ratio preference optimization algorithm, ORPO, eliminating the need for an additional preference alignment phase. We demonstrate, both empirically and theoretically, that the odds ratio is a sensible choice for contrasting favored and disfavored styles during SFT across diverse sizes from 125M to 7B. Specifically, fine-tuning Phi-2 (2.7B), Llama-2 (7B), and Mistral (7B) with ORPO on the UltraFeedback alone surpasses the performance of state-of-the-art language models including Llama-2 Chat and Zephyr with more than 7B and 13B parameters: achieving up to 12.20{\%} on AlpacaEval 2.0 (Figure 1), and 7.32 in MT-Bench (Table 2). We release code and model checkpoints for Mistral-ORPO-$\alpha$ (7B) and Mistral-ORPO-$\beta$ (7B).",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="hong-etal-2024-orpo">
<titleInfo>
<title>ORPO: Monolithic Preference Optimization without Reference Model</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jiwoo</namePart>
<namePart type="family">Hong</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Noah</namePart>
<namePart type="family">Lee</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">James</namePart>
<namePart type="family">Thorne</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yaser</namePart>
<namePart type="family">Al-Onaizan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mohit</namePart>
<namePart type="family">Bansal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yun-Nung</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Miami, Florida, USA</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>While recent preference alignment algorithms for language models have demonstrated promising results, supervised fine-tuning (SFT) remains imperative for achieving successful convergence. In this paper, we revisit SFT in the context of preference alignment, emphasizing that a minor penalty for the disfavored style is sufficient for preference alignment. Building on this foundation, we introduce a straightforward reference model-free monolithic odds ratio preference optimization algorithm, ORPO, eliminating the need for an additional preference alignment phase. We demonstrate, both empirically and theoretically, that the odds ratio is a sensible choice for contrasting favored and disfavored styles during SFT across diverse sizes from 125M to 7B. Specifically, fine-tuning Phi-2 (2.7B), Llama-2 (7B), and Mistral (7B) with ORPO on the UltraFeedback alone surpasses the performance of state-of-the-art language models including Llama-2 Chat and Zephyr with more than 7B and 13B parameters: achieving up to 12.20% on AlpacaEval 2.0 (Figure 1), and 7.32 in MT-Bench (Table 2). We release code and model checkpoints for Mistral-ORPO-α (7B) and Mistral-ORPO-β (7B).</abstract>
<identifier type="citekey">hong-etal-2024-orpo</identifier>
<location>
<url>https://aclanthology.org/2024.emnlp-main.626</url>
</location>
<part>
<date>2024-11</date>
<extent unit="page">
<start>11170</start>
<end>11189</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T ORPO: Monolithic Preference Optimization without Reference Model
%A Hong, Jiwoo
%A Lee, Noah
%A Thorne, James
%Y Al-Onaizan, Yaser
%Y Bansal, Mohit
%Y Chen, Yun-Nung
%S Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
%D 2024
%8 November
%I Association for Computational Linguistics
%C Miami, Florida, USA
%F hong-etal-2024-orpo
%X While recent preference alignment algorithms for language models have demonstrated promising results, supervised fine-tuning (SFT) remains imperative for achieving successful convergence. In this paper, we revisit SFT in the context of preference alignment, emphasizing that a minor penalty for the disfavored style is sufficient for preference alignment. Building on this foundation, we introduce a straightforward reference model-free monolithic odds ratio preference optimization algorithm, ORPO, eliminating the need for an additional preference alignment phase. We demonstrate, both empirically and theoretically, that the odds ratio is a sensible choice for contrasting favored and disfavored styles during SFT across diverse sizes from 125M to 7B. Specifically, fine-tuning Phi-2 (2.7B), Llama-2 (7B), and Mistral (7B) with ORPO on the UltraFeedback alone surpasses the performance of state-of-the-art language models including Llama-2 Chat and Zephyr with more than 7B and 13B parameters: achieving up to 12.20% on AlpacaEval 2.0 (Figure 1), and 7.32 in MT-Bench (Table 2). We release code and model checkpoints for Mistral-ORPO-α (7B) and Mistral-ORPO-β (7B).
%U https://aclanthology.org/2024.emnlp-main.626
%P 11170-11189
Markdown (Informal)
[ORPO: Monolithic Preference Optimization without Reference Model](https://aclanthology.org/2024.emnlp-main.626) (Hong et al., EMNLP 2024)
ACL