CoGen: Learning from Feedback with Coupled Comprehension and Generation

Mustafa Omer Gul, Yoav Artzi


Abstract
Systems with both language comprehension and generation capabilities can benefit from the tight connection between the two. This work studies coupling comprehension and generation with focus on continually learning from interaction with users. We propose techniques to tightly integrate the two capabilities for both learning and inference. We situate our studies in two-player reference games, and deploy various models for thousands of interactions with human users, while learning from interaction feedback signals. We show dramatic improvements in performance over time, with comprehension-generation coupling leading to performance improvements up to 26% in absolute terms and up to 17% higher accuracies compared to a non-coupled system. Our analysis also shows coupling has substantial qualitative impact on the system’s language, making it significantly more human-like.
Anthology ID:
2024.emnlp-main.721
Volume:
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
Month:
November
Year:
2024
Address:
Miami, Florida, USA
Editors:
Yaser Al-Onaizan, Mohit Bansal, Yun-Nung Chen
Venue:
EMNLP
SIG:
Publisher:
Association for Computational Linguistics
Note:
Pages:
12966–12982
Language:
URL:
https://aclanthology.org/2024.emnlp-main.721
DOI:
10.18653/v1/2024.emnlp-main.721
Bibkey:
Cite (ACL):
Mustafa Omer Gul and Yoav Artzi. 2024. CoGen: Learning from Feedback with Coupled Comprehension and Generation. In Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing, pages 12966–12982, Miami, Florida, USA. Association for Computational Linguistics.
Cite (Informal):
CoGen: Learning from Feedback with Coupled Comprehension and Generation (Gul & Artzi, EMNLP 2024)
Copy Citation:
PDF:
https://aclanthology.org/2024.emnlp-main.721.pdf