@inproceedings{hou-li-2024-character,
title = "Character-Level {C}hinese Dependency Parsing via Modeling Latent Intra-Word Structure",
author = "Hou, Yang and
Li, Zhenghua",
editor = "Ku, Lun-Wei and
Martins, Andre and
Srikumar, Vivek",
booktitle = "Findings of the Association for Computational Linguistics: ACL 2024",
month = aug,
year = "2024",
address = "Bangkok, Thailand",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.findings-acl.173",
doi = "10.18653/v1/2024.findings-acl.173",
pages = "2943--2956",
abstract = "Revealing the syntactic structure of sentences in Chinese poses significant challenges for word-level parsers due to the absence of clear word boundaries. To facilitate a transition from word-level to character-level Chinese dependency parsing, this paper proposes modeling latent internal structures within words. In this way, each word-level dependency tree is interpreted as a forest of character-level trees. A constrained Eisner algorithm is implemented to ensure the compatibility of character-level trees, guaranteeing a single root for intra-word structures and establishing inter-word dependencies between these roots. Experiments on Chinese treebanks demonstrate the superiority of our method over both the pipeline framework and previous joint models. A detailed analysis reveals that a coarse-to-fine parsing strategy empowers the model to predict more linguistically plausible intra-word structures.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="hou-li-2024-character">
<titleInfo>
<title>Character-Level Chinese Dependency Parsing via Modeling Latent Intra-Word Structure</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yang</namePart>
<namePart type="family">Hou</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zhenghua</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: ACL 2024</title>
</titleInfo>
<name type="personal">
<namePart type="given">Lun-Wei</namePart>
<namePart type="family">Ku</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Andre</namePart>
<namePart type="family">Martins</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vivek</namePart>
<namePart type="family">Srikumar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Bangkok, Thailand</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Revealing the syntactic structure of sentences in Chinese poses significant challenges for word-level parsers due to the absence of clear word boundaries. To facilitate a transition from word-level to character-level Chinese dependency parsing, this paper proposes modeling latent internal structures within words. In this way, each word-level dependency tree is interpreted as a forest of character-level trees. A constrained Eisner algorithm is implemented to ensure the compatibility of character-level trees, guaranteeing a single root for intra-word structures and establishing inter-word dependencies between these roots. Experiments on Chinese treebanks demonstrate the superiority of our method over both the pipeline framework and previous joint models. A detailed analysis reveals that a coarse-to-fine parsing strategy empowers the model to predict more linguistically plausible intra-word structures.</abstract>
<identifier type="citekey">hou-li-2024-character</identifier>
<identifier type="doi">10.18653/v1/2024.findings-acl.173</identifier>
<location>
<url>https://aclanthology.org/2024.findings-acl.173</url>
</location>
<part>
<date>2024-08</date>
<extent unit="page">
<start>2943</start>
<end>2956</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Character-Level Chinese Dependency Parsing via Modeling Latent Intra-Word Structure
%A Hou, Yang
%A Li, Zhenghua
%Y Ku, Lun-Wei
%Y Martins, Andre
%Y Srikumar, Vivek
%S Findings of the Association for Computational Linguistics: ACL 2024
%D 2024
%8 August
%I Association for Computational Linguistics
%C Bangkok, Thailand
%F hou-li-2024-character
%X Revealing the syntactic structure of sentences in Chinese poses significant challenges for word-level parsers due to the absence of clear word boundaries. To facilitate a transition from word-level to character-level Chinese dependency parsing, this paper proposes modeling latent internal structures within words. In this way, each word-level dependency tree is interpreted as a forest of character-level trees. A constrained Eisner algorithm is implemented to ensure the compatibility of character-level trees, guaranteeing a single root for intra-word structures and establishing inter-word dependencies between these roots. Experiments on Chinese treebanks demonstrate the superiority of our method over both the pipeline framework and previous joint models. A detailed analysis reveals that a coarse-to-fine parsing strategy empowers the model to predict more linguistically plausible intra-word structures.
%R 10.18653/v1/2024.findings-acl.173
%U https://aclanthology.org/2024.findings-acl.173
%U https://doi.org/10.18653/v1/2024.findings-acl.173
%P 2943-2956
Markdown (Informal)
[Character-Level Chinese Dependency Parsing via Modeling Latent Intra-Word Structure](https://aclanthology.org/2024.findings-acl.173) (Hou & Li, Findings 2024)
ACL