@inproceedings{kim-etal-2024-hierarchy,
title = "Hierarchy-aware Biased Bound Margin Loss Function for Hierarchical Text Classification",
author = "Kim, Gibaeg and
Im, SangHun and
Oh, Heung-Seon",
editor = "Ku, Lun-Wei and
Martins, Andre and
Srikumar, Vivek",
booktitle = "Findings of the Association for Computational Linguistics: ACL 2024",
month = aug,
year = "2024",
address = "Bangkok, Thailand",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.findings-acl.457",
doi = "10.18653/v1/2024.findings-acl.457",
pages = "7672--7682",
abstract = "Hierarchical text classification (HTC) is a challenging problem with two key issues: utilizing structural information and mitigating label imbalance. Recently, the unit-based approach generating unit-based feature representations has outperformed the global approach focusing on a global feature representation. Nevertheless, unit-based models using BCE and ZLPR losses still face static thresholding and label imbalance challenges. Those challenges become more critical in large-scale hierarchies. This paper introduces a novel hierarchy-aware loss function for unit-based HTC models: Hierarchy-aware Biased Bound Margin (HBM) loss. HBM integrates learnable bounds, biases, and a margin to address static thresholding and mitigate label imbalance adaptively. Experimental results on benchmark datasets demonstrate the superior performance of HBM compared to competitive HTC models.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="kim-etal-2024-hierarchy">
<titleInfo>
<title>Hierarchy-aware Biased Bound Margin Loss Function for Hierarchical Text Classification</title>
</titleInfo>
<name type="personal">
<namePart type="given">Gibaeg</namePart>
<namePart type="family">Kim</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">SangHun</namePart>
<namePart type="family">Im</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Heung-Seon</namePart>
<namePart type="family">Oh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: ACL 2024</title>
</titleInfo>
<name type="personal">
<namePart type="given">Lun-Wei</namePart>
<namePart type="family">Ku</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Andre</namePart>
<namePart type="family">Martins</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vivek</namePart>
<namePart type="family">Srikumar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Bangkok, Thailand</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Hierarchical text classification (HTC) is a challenging problem with two key issues: utilizing structural information and mitigating label imbalance. Recently, the unit-based approach generating unit-based feature representations has outperformed the global approach focusing on a global feature representation. Nevertheless, unit-based models using BCE and ZLPR losses still face static thresholding and label imbalance challenges. Those challenges become more critical in large-scale hierarchies. This paper introduces a novel hierarchy-aware loss function for unit-based HTC models: Hierarchy-aware Biased Bound Margin (HBM) loss. HBM integrates learnable bounds, biases, and a margin to address static thresholding and mitigate label imbalance adaptively. Experimental results on benchmark datasets demonstrate the superior performance of HBM compared to competitive HTC models.</abstract>
<identifier type="citekey">kim-etal-2024-hierarchy</identifier>
<identifier type="doi">10.18653/v1/2024.findings-acl.457</identifier>
<location>
<url>https://aclanthology.org/2024.findings-acl.457</url>
</location>
<part>
<date>2024-08</date>
<extent unit="page">
<start>7672</start>
<end>7682</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Hierarchy-aware Biased Bound Margin Loss Function for Hierarchical Text Classification
%A Kim, Gibaeg
%A Im, SangHun
%A Oh, Heung-Seon
%Y Ku, Lun-Wei
%Y Martins, Andre
%Y Srikumar, Vivek
%S Findings of the Association for Computational Linguistics: ACL 2024
%D 2024
%8 August
%I Association for Computational Linguistics
%C Bangkok, Thailand
%F kim-etal-2024-hierarchy
%X Hierarchical text classification (HTC) is a challenging problem with two key issues: utilizing structural information and mitigating label imbalance. Recently, the unit-based approach generating unit-based feature representations has outperformed the global approach focusing on a global feature representation. Nevertheless, unit-based models using BCE and ZLPR losses still face static thresholding and label imbalance challenges. Those challenges become more critical in large-scale hierarchies. This paper introduces a novel hierarchy-aware loss function for unit-based HTC models: Hierarchy-aware Biased Bound Margin (HBM) loss. HBM integrates learnable bounds, biases, and a margin to address static thresholding and mitigate label imbalance adaptively. Experimental results on benchmark datasets demonstrate the superior performance of HBM compared to competitive HTC models.
%R 10.18653/v1/2024.findings-acl.457
%U https://aclanthology.org/2024.findings-acl.457
%U https://doi.org/10.18653/v1/2024.findings-acl.457
%P 7672-7682
Markdown (Informal)
[Hierarchy-aware Biased Bound Margin Loss Function for Hierarchical Text Classification](https://aclanthology.org/2024.findings-acl.457) (Kim et al., Findings 2024)
ACL