@inproceedings{santoso-etal-2024-pushing,
title = "Pushing the Limits of Low-Resource {NER} Using {LLM} Artificial Data Generation",
author = "Santoso, Joan and
Sutanto, Patrick and
Cahyadi, Billy and
Setiawan, Esther",
editor = "Ku, Lun-Wei and
Martins, Andre and
Srikumar, Vivek",
booktitle = "Findings of the Association for Computational Linguistics: ACL 2024",
month = aug,
year = "2024",
address = "Bangkok, Thailand",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.findings-acl.575",
doi = "10.18653/v1/2024.findings-acl.575",
pages = "9652--9667",
abstract = "Named Entity Recognition (NER) is an important task, but to achieve great performance, it is usually necessary to collect a large amount of labeled data, incurring high costs. In this paper, we propose using open-source Large Language Models (LLM) to generate NER data with only a few labeled examples, reducing the cost of human annotations. Our proposed method is very simple and can perform well using only a few labeled data points. Experimental results on diverse low-resource NER datasets show that our proposed data generation method can significantly improve the baseline. Additionally, our method can be used to augment datasets with class-imbalance problems and consistently improves model performance on macro-F1 metrics.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="santoso-etal-2024-pushing">
<titleInfo>
<title>Pushing the Limits of Low-Resource NER Using LLM Artificial Data Generation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Joan</namePart>
<namePart type="family">Santoso</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Patrick</namePart>
<namePart type="family">Sutanto</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Billy</namePart>
<namePart type="family">Cahyadi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Esther</namePart>
<namePart type="family">Setiawan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: ACL 2024</title>
</titleInfo>
<name type="personal">
<namePart type="given">Lun-Wei</namePart>
<namePart type="family">Ku</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Andre</namePart>
<namePart type="family">Martins</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vivek</namePart>
<namePart type="family">Srikumar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Bangkok, Thailand</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Named Entity Recognition (NER) is an important task, but to achieve great performance, it is usually necessary to collect a large amount of labeled data, incurring high costs. In this paper, we propose using open-source Large Language Models (LLM) to generate NER data with only a few labeled examples, reducing the cost of human annotations. Our proposed method is very simple and can perform well using only a few labeled data points. Experimental results on diverse low-resource NER datasets show that our proposed data generation method can significantly improve the baseline. Additionally, our method can be used to augment datasets with class-imbalance problems and consistently improves model performance on macro-F1 metrics.</abstract>
<identifier type="citekey">santoso-etal-2024-pushing</identifier>
<identifier type="doi">10.18653/v1/2024.findings-acl.575</identifier>
<location>
<url>https://aclanthology.org/2024.findings-acl.575</url>
</location>
<part>
<date>2024-08</date>
<extent unit="page">
<start>9652</start>
<end>9667</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Pushing the Limits of Low-Resource NER Using LLM Artificial Data Generation
%A Santoso, Joan
%A Sutanto, Patrick
%A Cahyadi, Billy
%A Setiawan, Esther
%Y Ku, Lun-Wei
%Y Martins, Andre
%Y Srikumar, Vivek
%S Findings of the Association for Computational Linguistics: ACL 2024
%D 2024
%8 August
%I Association for Computational Linguistics
%C Bangkok, Thailand
%F santoso-etal-2024-pushing
%X Named Entity Recognition (NER) is an important task, but to achieve great performance, it is usually necessary to collect a large amount of labeled data, incurring high costs. In this paper, we propose using open-source Large Language Models (LLM) to generate NER data with only a few labeled examples, reducing the cost of human annotations. Our proposed method is very simple and can perform well using only a few labeled data points. Experimental results on diverse low-resource NER datasets show that our proposed data generation method can significantly improve the baseline. Additionally, our method can be used to augment datasets with class-imbalance problems and consistently improves model performance on macro-F1 metrics.
%R 10.18653/v1/2024.findings-acl.575
%U https://aclanthology.org/2024.findings-acl.575
%U https://doi.org/10.18653/v1/2024.findings-acl.575
%P 9652-9667
Markdown (Informal)
[Pushing the Limits of Low-Resource NER Using LLM Artificial Data Generation](https://aclanthology.org/2024.findings-acl.575) (Santoso et al., Findings 2024)
ACL