@inproceedings{hammerl-etal-2024-understanding,
title = "Understanding Cross-Lingual {A}lignment{---}{A} Survey",
author = {H{\"a}mmerl, Katharina and
Libovick{\'y}, Jind{\v{r}}ich and
Fraser, Alexander},
editor = "Ku, Lun-Wei and
Martins, Andre and
Srikumar, Vivek",
booktitle = "Findings of the Association for Computational Linguistics: ACL 2024",
month = aug,
year = "2024",
address = "Bangkok, Thailand",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.findings-acl.649",
doi = "10.18653/v1/2024.findings-acl.649",
pages = "10922--10943",
abstract = "Cross-lingual alignment, the meaningful similarity of representations across languages in multilingual language models, has been an active field of research in recent years. We survey the literature of techniques to improve cross-lingual alignment, providing a taxonomy of methods and summarising insights from throughout the field. We present different understandings of cross-lingual alignment and their limitations. We provide a qualitative summary of results from a number of surveyed papers. Finally, we discuss how these insights may be applied not only to encoder models, where this topic has been heavily studied, but also to encoder-decoder or even decoder-only models, and argue that an effective trade-off between language-neutral and language-specific information is key.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="hammerl-etal-2024-understanding">
<titleInfo>
<title>Understanding Cross-Lingual Alignment—A Survey</title>
</titleInfo>
<name type="personal">
<namePart type="given">Katharina</namePart>
<namePart type="family">Hämmerl</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jindřich</namePart>
<namePart type="family">Libovický</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alexander</namePart>
<namePart type="family">Fraser</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: ACL 2024</title>
</titleInfo>
<name type="personal">
<namePart type="given">Lun-Wei</namePart>
<namePart type="family">Ku</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Andre</namePart>
<namePart type="family">Martins</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vivek</namePart>
<namePart type="family">Srikumar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Bangkok, Thailand</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Cross-lingual alignment, the meaningful similarity of representations across languages in multilingual language models, has been an active field of research in recent years. We survey the literature of techniques to improve cross-lingual alignment, providing a taxonomy of methods and summarising insights from throughout the field. We present different understandings of cross-lingual alignment and their limitations. We provide a qualitative summary of results from a number of surveyed papers. Finally, we discuss how these insights may be applied not only to encoder models, where this topic has been heavily studied, but also to encoder-decoder or even decoder-only models, and argue that an effective trade-off between language-neutral and language-specific information is key.</abstract>
<identifier type="citekey">hammerl-etal-2024-understanding</identifier>
<identifier type="doi">10.18653/v1/2024.findings-acl.649</identifier>
<location>
<url>https://aclanthology.org/2024.findings-acl.649</url>
</location>
<part>
<date>2024-08</date>
<extent unit="page">
<start>10922</start>
<end>10943</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Understanding Cross-Lingual Alignment—A Survey
%A Hämmerl, Katharina
%A Libovický, Jindřich
%A Fraser, Alexander
%Y Ku, Lun-Wei
%Y Martins, Andre
%Y Srikumar, Vivek
%S Findings of the Association for Computational Linguistics: ACL 2024
%D 2024
%8 August
%I Association for Computational Linguistics
%C Bangkok, Thailand
%F hammerl-etal-2024-understanding
%X Cross-lingual alignment, the meaningful similarity of representations across languages in multilingual language models, has been an active field of research in recent years. We survey the literature of techniques to improve cross-lingual alignment, providing a taxonomy of methods and summarising insights from throughout the field. We present different understandings of cross-lingual alignment and their limitations. We provide a qualitative summary of results from a number of surveyed papers. Finally, we discuss how these insights may be applied not only to encoder models, where this topic has been heavily studied, but also to encoder-decoder or even decoder-only models, and argue that an effective trade-off between language-neutral and language-specific information is key.
%R 10.18653/v1/2024.findings-acl.649
%U https://aclanthology.org/2024.findings-acl.649
%U https://doi.org/10.18653/v1/2024.findings-acl.649
%P 10922-10943
Markdown (Informal)
[Understanding Cross-Lingual Alignment—A Survey](https://aclanthology.org/2024.findings-acl.649) (Hämmerl et al., Findings 2024)
ACL
- Katharina Hämmerl, Jindřich Libovický, and Alexander Fraser. 2024. Understanding Cross-Lingual Alignment—A Survey. In Findings of the Association for Computational Linguistics: ACL 2024, pages 10922–10943, Bangkok, Thailand. Association for Computational Linguistics.