@inproceedings{li-etal-2024-mug,
title = "{MUG}: Interactive Multimodal Grounding on User Interfaces",
author = "Li, Tao and
Li, Gang and
Zheng, Jingjie and
Wang, Purple and
Li, Yang",
editor = "Graham, Yvette and
Purver, Matthew",
booktitle = "Findings of the Association for Computational Linguistics: EACL 2024",
month = mar,
year = "2024",
address = "St. Julian{'}s, Malta",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.findings-eacl.17",
pages = "231--251",
abstract = "We present MUG, a novel interactive task for multimodal grounding where a user and an agent work collaboratively on an interface screen. Prior works modeled multimodal UI grounding in one round: the user gives a command and the agent responds to the command. Yet, in a realistic scenario, a user command can be ambiguous when the target action is inherently difficult to articulate in natural language. MUG allows multiple rounds of interactions such that upon seeing the agent responses, the user can give further commands for the agent to refine or even correct its actions. Such interaction is critical for improving grounding performances in real-world use cases. To investigate the problem, we create a new dataset that consists of 77,820 sequences of human user-agent interaction on mobile interfaces in which 20{\%} involves multiple rounds of interactions. To establish benchmark, we experiment with a range of modeling variants and evaluation strategies, including both offline and online evaluation{---}the online strategy consists of both human evaluation and automatic with simulators. Our experiments show that iterative interaction significantly improves the absolute task completion by 18{\%} over the entire test set and 31{\%} over the challenging split. Our results lay the foundation for further investigation of the problem.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="li-etal-2024-mug">
<titleInfo>
<title>MUG: Interactive Multimodal Grounding on User Interfaces</title>
</titleInfo>
<name type="personal">
<namePart type="given">Tao</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Gang</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jingjie</namePart>
<namePart type="family">Zheng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Purple</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yang</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-03</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: EACL 2024</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yvette</namePart>
<namePart type="family">Graham</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Matthew</namePart>
<namePart type="family">Purver</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">St. Julian’s, Malta</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We present MUG, a novel interactive task for multimodal grounding where a user and an agent work collaboratively on an interface screen. Prior works modeled multimodal UI grounding in one round: the user gives a command and the agent responds to the command. Yet, in a realistic scenario, a user command can be ambiguous when the target action is inherently difficult to articulate in natural language. MUG allows multiple rounds of interactions such that upon seeing the agent responses, the user can give further commands for the agent to refine or even correct its actions. Such interaction is critical for improving grounding performances in real-world use cases. To investigate the problem, we create a new dataset that consists of 77,820 sequences of human user-agent interaction on mobile interfaces in which 20% involves multiple rounds of interactions. To establish benchmark, we experiment with a range of modeling variants and evaluation strategies, including both offline and online evaluation—the online strategy consists of both human evaluation and automatic with simulators. Our experiments show that iterative interaction significantly improves the absolute task completion by 18% over the entire test set and 31% over the challenging split. Our results lay the foundation for further investigation of the problem.</abstract>
<identifier type="citekey">li-etal-2024-mug</identifier>
<location>
<url>https://aclanthology.org/2024.findings-eacl.17</url>
</location>
<part>
<date>2024-03</date>
<extent unit="page">
<start>231</start>
<end>251</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T MUG: Interactive Multimodal Grounding on User Interfaces
%A Li, Tao
%A Li, Gang
%A Zheng, Jingjie
%A Wang, Purple
%A Li, Yang
%Y Graham, Yvette
%Y Purver, Matthew
%S Findings of the Association for Computational Linguistics: EACL 2024
%D 2024
%8 March
%I Association for Computational Linguistics
%C St. Julian’s, Malta
%F li-etal-2024-mug
%X We present MUG, a novel interactive task for multimodal grounding where a user and an agent work collaboratively on an interface screen. Prior works modeled multimodal UI grounding in one round: the user gives a command and the agent responds to the command. Yet, in a realistic scenario, a user command can be ambiguous when the target action is inherently difficult to articulate in natural language. MUG allows multiple rounds of interactions such that upon seeing the agent responses, the user can give further commands for the agent to refine or even correct its actions. Such interaction is critical for improving grounding performances in real-world use cases. To investigate the problem, we create a new dataset that consists of 77,820 sequences of human user-agent interaction on mobile interfaces in which 20% involves multiple rounds of interactions. To establish benchmark, we experiment with a range of modeling variants and evaluation strategies, including both offline and online evaluation—the online strategy consists of both human evaluation and automatic with simulators. Our experiments show that iterative interaction significantly improves the absolute task completion by 18% over the entire test set and 31% over the challenging split. Our results lay the foundation for further investigation of the problem.
%U https://aclanthology.org/2024.findings-eacl.17
%P 231-251
Markdown (Informal)
[MUG: Interactive Multimodal Grounding on User Interfaces](https://aclanthology.org/2024.findings-eacl.17) (Li et al., Findings 2024)
ACL