@inproceedings{metel-etal-2024-draft,
title = "Draft on the Fly: Adaptive Self-Speculative Decoding using Cosine Similarity",
author = "Metel, Michael and
Lu, Peng and
Chen, Boxing and
Rezagholizadeh, Mehdi and
Kobyzev, Ivan",
editor = "Al-Onaizan, Yaser and
Bansal, Mohit and
Chen, Yun-Nung",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2024",
month = nov,
year = "2024",
address = "Miami, Florida, USA",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.findings-emnlp.124",
pages = "2267--2272",
abstract = "We present a simple on the fly method for faster inference of large language models. Unlike other (self-)speculative decoding techniques, our method does not require fine-tuning or black-box optimization to generate a fixed draft model, relying instead on simple rules to generate varying draft models adapted to the input context. We show empirically that our light-weight algorithm is competitive with the current SOTA for self-speculative decoding, while being a truly plug-and-play method.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="metel-etal-2024-draft">
<titleInfo>
<title>Draft on the Fly: Adaptive Self-Speculative Decoding using Cosine Similarity</title>
</titleInfo>
<name type="personal">
<namePart type="given">Michael</namePart>
<namePart type="family">Metel</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Peng</namePart>
<namePart type="family">Lu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Boxing</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mehdi</namePart>
<namePart type="family">Rezagholizadeh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ivan</namePart>
<namePart type="family">Kobyzev</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: EMNLP 2024</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yaser</namePart>
<namePart type="family">Al-Onaizan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mohit</namePart>
<namePart type="family">Bansal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yun-Nung</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Miami, Florida, USA</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We present a simple on the fly method for faster inference of large language models. Unlike other (self-)speculative decoding techniques, our method does not require fine-tuning or black-box optimization to generate a fixed draft model, relying instead on simple rules to generate varying draft models adapted to the input context. We show empirically that our light-weight algorithm is competitive with the current SOTA for self-speculative decoding, while being a truly plug-and-play method.</abstract>
<identifier type="citekey">metel-etal-2024-draft</identifier>
<location>
<url>https://aclanthology.org/2024.findings-emnlp.124</url>
</location>
<part>
<date>2024-11</date>
<extent unit="page">
<start>2267</start>
<end>2272</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Draft on the Fly: Adaptive Self-Speculative Decoding using Cosine Similarity
%A Metel, Michael
%A Lu, Peng
%A Chen, Boxing
%A Rezagholizadeh, Mehdi
%A Kobyzev, Ivan
%Y Al-Onaizan, Yaser
%Y Bansal, Mohit
%Y Chen, Yun-Nung
%S Findings of the Association for Computational Linguistics: EMNLP 2024
%D 2024
%8 November
%I Association for Computational Linguistics
%C Miami, Florida, USA
%F metel-etal-2024-draft
%X We present a simple on the fly method for faster inference of large language models. Unlike other (self-)speculative decoding techniques, our method does not require fine-tuning or black-box optimization to generate a fixed draft model, relying instead on simple rules to generate varying draft models adapted to the input context. We show empirically that our light-weight algorithm is competitive with the current SOTA for self-speculative decoding, while being a truly plug-and-play method.
%U https://aclanthology.org/2024.findings-emnlp.124
%P 2267-2272
Markdown (Informal)
[Draft on the Fly: Adaptive Self-Speculative Decoding using Cosine Similarity](https://aclanthology.org/2024.findings-emnlp.124) (Metel et al., Findings 2024)
ACL