@inproceedings{gao-etal-2024-novel,
title = "A Novel Two-step Fine-tuning Framework for Transfer Learning in Low-Resource Neural Machine Translation",
author = "Gao, Yuan and
Hou, Feng and
Wang, Ruili",
editor = "Duh, Kevin and
Gomez, Helena and
Bethard, Steven",
booktitle = "Findings of the Association for Computational Linguistics: NAACL 2024",
month = jun,
year = "2024",
address = "Mexico City, Mexico",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.findings-naacl.203",
doi = "10.18653/v1/2024.findings-naacl.203",
pages = "3214--3224",
abstract = "Existing transfer learning methods for neural machine translation typically use a well-trained translation model (i.e., a parent model) of a high-resource language pair to directly initialize a translation model (i.e., a child model) of a low-resource language pair, and the child model is then fine-tuned with corresponding datasets. In this paper, we propose a novel two-step fine-tuning (TSFT) framework for transfer learning in low-resource neural machine translation. In the first step, we adjust the parameters of the parent model to fit the child language by using the child source data. In the second step, we transfer the adjusted parameters to the child model and fine-tune it with a proposed distillation loss for efficient optimization. Our experimental results on five low-resource translations demonstrate that our framework yields significant improvements over various strong transfer learning baselines. Further analysis demonstrated the effectiveness of different components in our framework.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="gao-etal-2024-novel">
<titleInfo>
<title>A Novel Two-step Fine-tuning Framework for Transfer Learning in Low-Resource Neural Machine Translation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yuan</namePart>
<namePart type="family">Gao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Feng</namePart>
<namePart type="family">Hou</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ruili</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: NAACL 2024</title>
</titleInfo>
<name type="personal">
<namePart type="given">Kevin</namePart>
<namePart type="family">Duh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Helena</namePart>
<namePart type="family">Gomez</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Steven</namePart>
<namePart type="family">Bethard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Mexico City, Mexico</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Existing transfer learning methods for neural machine translation typically use a well-trained translation model (i.e., a parent model) of a high-resource language pair to directly initialize a translation model (i.e., a child model) of a low-resource language pair, and the child model is then fine-tuned with corresponding datasets. In this paper, we propose a novel two-step fine-tuning (TSFT) framework for transfer learning in low-resource neural machine translation. In the first step, we adjust the parameters of the parent model to fit the child language by using the child source data. In the second step, we transfer the adjusted parameters to the child model and fine-tune it with a proposed distillation loss for efficient optimization. Our experimental results on five low-resource translations demonstrate that our framework yields significant improvements over various strong transfer learning baselines. Further analysis demonstrated the effectiveness of different components in our framework.</abstract>
<identifier type="citekey">gao-etal-2024-novel</identifier>
<identifier type="doi">10.18653/v1/2024.findings-naacl.203</identifier>
<location>
<url>https://aclanthology.org/2024.findings-naacl.203</url>
</location>
<part>
<date>2024-06</date>
<extent unit="page">
<start>3214</start>
<end>3224</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T A Novel Two-step Fine-tuning Framework for Transfer Learning in Low-Resource Neural Machine Translation
%A Gao, Yuan
%A Hou, Feng
%A Wang, Ruili
%Y Duh, Kevin
%Y Gomez, Helena
%Y Bethard, Steven
%S Findings of the Association for Computational Linguistics: NAACL 2024
%D 2024
%8 June
%I Association for Computational Linguistics
%C Mexico City, Mexico
%F gao-etal-2024-novel
%X Existing transfer learning methods for neural machine translation typically use a well-trained translation model (i.e., a parent model) of a high-resource language pair to directly initialize a translation model (i.e., a child model) of a low-resource language pair, and the child model is then fine-tuned with corresponding datasets. In this paper, we propose a novel two-step fine-tuning (TSFT) framework for transfer learning in low-resource neural machine translation. In the first step, we adjust the parameters of the parent model to fit the child language by using the child source data. In the second step, we transfer the adjusted parameters to the child model and fine-tune it with a proposed distillation loss for efficient optimization. Our experimental results on five low-resource translations demonstrate that our framework yields significant improvements over various strong transfer learning baselines. Further analysis demonstrated the effectiveness of different components in our framework.
%R 10.18653/v1/2024.findings-naacl.203
%U https://aclanthology.org/2024.findings-naacl.203
%U https://doi.org/10.18653/v1/2024.findings-naacl.203
%P 3214-3224
Markdown (Informal)
[A Novel Two-step Fine-tuning Framework for Transfer Learning in Low-Resource Neural Machine Translation](https://aclanthology.org/2024.findings-naacl.203) (Gao et al., Findings 2024)
ACL