@inproceedings{tan-etal-2024-narrowing,
title = "Narrowing the Gap between Zero- and Few-shot Machine Translation by Matching Styles",
author = "Tan, Weiting and
Xu, Haoran and
Shen, Lingfeng and
Li, Shuyue Stella and
Murray, Kenton and
Koehn, Philipp and
Van Durme, Benjamin and
Chen, Yunmo",
editor = "Duh, Kevin and
Gomez, Helena and
Bethard, Steven",
booktitle = "Findings of the Association for Computational Linguistics: NAACL 2024",
month = jun,
year = "2024",
address = "Mexico City, Mexico",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.findings-naacl.33",
doi = "10.18653/v1/2024.findings-naacl.33",
pages = "490--502",
abstract = "Large language models trained primarily in a monolingual setting have demonstrated their ability to generalize to machine translation using zero- and few-shot examples with in-context learning. However, even though zero-shot translations are relatively good, there remains a discernible gap comparing their performance with the few-shot setting. In this paper, we investigate the factors contributing to this gap and find that this gap can largely be closed (for about 70{\%}) by matching the writing styles of the target corpus. Additionally, we explore potential approaches to enhance zero-shot baselines without the need for parallel demonstration examples, providing valuable insights into how these methods contribute to improving translation metrics.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="tan-etal-2024-narrowing">
<titleInfo>
<title>Narrowing the Gap between Zero- and Few-shot Machine Translation by Matching Styles</title>
</titleInfo>
<name type="personal">
<namePart type="given">Weiting</namePart>
<namePart type="family">Tan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Haoran</namePart>
<namePart type="family">Xu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lingfeng</namePart>
<namePart type="family">Shen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shuyue</namePart>
<namePart type="given">Stella</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kenton</namePart>
<namePart type="family">Murray</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Philipp</namePart>
<namePart type="family">Koehn</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Benjamin</namePart>
<namePart type="family">Van Durme</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yunmo</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: NAACL 2024</title>
</titleInfo>
<name type="personal">
<namePart type="given">Kevin</namePart>
<namePart type="family">Duh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Helena</namePart>
<namePart type="family">Gomez</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Steven</namePart>
<namePart type="family">Bethard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Mexico City, Mexico</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Large language models trained primarily in a monolingual setting have demonstrated their ability to generalize to machine translation using zero- and few-shot examples with in-context learning. However, even though zero-shot translations are relatively good, there remains a discernible gap comparing their performance with the few-shot setting. In this paper, we investigate the factors contributing to this gap and find that this gap can largely be closed (for about 70%) by matching the writing styles of the target corpus. Additionally, we explore potential approaches to enhance zero-shot baselines without the need for parallel demonstration examples, providing valuable insights into how these methods contribute to improving translation metrics.</abstract>
<identifier type="citekey">tan-etal-2024-narrowing</identifier>
<identifier type="doi">10.18653/v1/2024.findings-naacl.33</identifier>
<location>
<url>https://aclanthology.org/2024.findings-naacl.33</url>
</location>
<part>
<date>2024-06</date>
<extent unit="page">
<start>490</start>
<end>502</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Narrowing the Gap between Zero- and Few-shot Machine Translation by Matching Styles
%A Tan, Weiting
%A Xu, Haoran
%A Shen, Lingfeng
%A Li, Shuyue Stella
%A Murray, Kenton
%A Koehn, Philipp
%A Van Durme, Benjamin
%A Chen, Yunmo
%Y Duh, Kevin
%Y Gomez, Helena
%Y Bethard, Steven
%S Findings of the Association for Computational Linguistics: NAACL 2024
%D 2024
%8 June
%I Association for Computational Linguistics
%C Mexico City, Mexico
%F tan-etal-2024-narrowing
%X Large language models trained primarily in a monolingual setting have demonstrated their ability to generalize to machine translation using zero- and few-shot examples with in-context learning. However, even though zero-shot translations are relatively good, there remains a discernible gap comparing their performance with the few-shot setting. In this paper, we investigate the factors contributing to this gap and find that this gap can largely be closed (for about 70%) by matching the writing styles of the target corpus. Additionally, we explore potential approaches to enhance zero-shot baselines without the need for parallel demonstration examples, providing valuable insights into how these methods contribute to improving translation metrics.
%R 10.18653/v1/2024.findings-naacl.33
%U https://aclanthology.org/2024.findings-naacl.33
%U https://doi.org/10.18653/v1/2024.findings-naacl.33
%P 490-502
Markdown (Informal)
[Narrowing the Gap between Zero- and Few-shot Machine Translation by Matching Styles](https://aclanthology.org/2024.findings-naacl.33) (Tan et al., Findings 2024)
ACL
- Weiting Tan, Haoran Xu, Lingfeng Shen, Shuyue Stella Li, Kenton Murray, Philipp Koehn, Benjamin Van Durme, and Yunmo Chen. 2024. Narrowing the Gap between Zero- and Few-shot Machine Translation by Matching Styles. In Findings of the Association for Computational Linguistics: NAACL 2024, pages 490–502, Mexico City, Mexico. Association for Computational Linguistics.