TRUE-UIE: Two Universal Relations Unify Information Extraction Tasks

Yucheng Wang, Bowen Yu, Yilin Liu, Shudong Lu


Abstract
Information extraction (IE) encounters challenges due to the variety of schemas and objectives that differ across tasks. Recent advancements hint at the potential for universal approaches to model such tasks, referred to as Universal Information Extraction (UIE). While handling diverse tasks in one model, their generalization is limited since they are actually learning task-specific knowledge.In this study, we introduce an innovative paradigm known as TRUE-UIE, wherein all IE tasks are aligned to learn the same goals: extracting mention spans and two universal relations named NEXT and IS. During the decoding process, the NEXT relation is utilized to group related elements, while the IS relation, in conjunction with structured language prompts, undertakes the role of type recognition. Additionally, we consider the sequential dependency of tokens during span extraction, an aspect often overlooked in prevalent models.Our empirical experiments indicate that TRUE-UIE achieves state-of-the-art performance on established benchmarks encompassing 16 datasets, spanning 7 diverse IE tasks. Further evaluations reveal that our approach effectively share knowledge between different IE tasks, showcasing significant transferability in zero-shot and few-shot scenarios.
Anthology ID:
2024.naacl-long.103
Volume:
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)
Month:
June
Year:
2024
Address:
Mexico City, Mexico
Editors:
Kevin Duh, Helena Gomez, Steven Bethard
Venue:
NAACL
SIG:
Publisher:
Association for Computational Linguistics
Note:
Pages:
1863–1876
Language:
URL:
https://aclanthology.org/2024.naacl-long.103
DOI:
10.18653/v1/2024.naacl-long.103
Bibkey:
Cite (ACL):
Yucheng Wang, Bowen Yu, Yilin Liu, and Shudong Lu. 2024. TRUE-UIE: Two Universal Relations Unify Information Extraction Tasks. In Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers), pages 1863–1876, Mexico City, Mexico. Association for Computational Linguistics.
Cite (Informal):
TRUE-UIE: Two Universal Relations Unify Information Extraction Tasks (Wang et al., NAACL 2024)
Copy Citation:
PDF:
https://aclanthology.org/2024.naacl-long.103.pdf