@inproceedings{masis-oconnor-2024-earth,
title = "Where on Earth Do Users Say They Are?: Geo-Entity Linking for Noisy Multilingual User Input",
author = "Masis, Tessa and
O{'}Connor, Brendan",
editor = "Card, Dallas and
Field, Anjalie and
Hovy, Dirk and
Keith, Katherine",
booktitle = "Proceedings of the Sixth Workshop on Natural Language Processing and Computational Social Science (NLP+CSS 2024)",
month = jun,
year = "2024",
address = "Mexico City, Mexico",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.nlpcss-1.7",
doi = "10.18653/v1/2024.nlpcss-1.7",
pages = "86--98",
abstract = "Geo-entity linking is the task of linking a location mention to the real-world geographic location. In this we explore the challenging task of geo-entity linking for noisy, multilingual social media data. There are few open-source multilingual geo-entity linking tools available and existing ones are often rule-based, which break easily in social media settings, or LLM-based, which are too expensive for large-scale datasets. We present a method which represents real-world locations as averaged embeddings from labeled user-input location names and allows for selective prediction via an interpretable confidence score. We show that our approach improves geo-entity linking on a global and multilingual social media dataset, and discuss progress and problems with evaluating at different geographic granularities.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="masis-oconnor-2024-earth">
<titleInfo>
<title>Where on Earth Do Users Say They Are?: Geo-Entity Linking for Noisy Multilingual User Input</title>
</titleInfo>
<name type="personal">
<namePart type="given">Tessa</namePart>
<namePart type="family">Masis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Brendan</namePart>
<namePart type="family">O’Connor</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Sixth Workshop on Natural Language Processing and Computational Social Science (NLP+CSS 2024)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Dallas</namePart>
<namePart type="family">Card</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Anjalie</namePart>
<namePart type="family">Field</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dirk</namePart>
<namePart type="family">Hovy</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Katherine</namePart>
<namePart type="family">Keith</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Mexico City, Mexico</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Geo-entity linking is the task of linking a location mention to the real-world geographic location. In this we explore the challenging task of geo-entity linking for noisy, multilingual social media data. There are few open-source multilingual geo-entity linking tools available and existing ones are often rule-based, which break easily in social media settings, or LLM-based, which are too expensive for large-scale datasets. We present a method which represents real-world locations as averaged embeddings from labeled user-input location names and allows for selective prediction via an interpretable confidence score. We show that our approach improves geo-entity linking on a global and multilingual social media dataset, and discuss progress and problems with evaluating at different geographic granularities.</abstract>
<identifier type="citekey">masis-oconnor-2024-earth</identifier>
<identifier type="doi">10.18653/v1/2024.nlpcss-1.7</identifier>
<location>
<url>https://aclanthology.org/2024.nlpcss-1.7</url>
</location>
<part>
<date>2024-06</date>
<extent unit="page">
<start>86</start>
<end>98</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Where on Earth Do Users Say They Are?: Geo-Entity Linking for Noisy Multilingual User Input
%A Masis, Tessa
%A O’Connor, Brendan
%Y Card, Dallas
%Y Field, Anjalie
%Y Hovy, Dirk
%Y Keith, Katherine
%S Proceedings of the Sixth Workshop on Natural Language Processing and Computational Social Science (NLP+CSS 2024)
%D 2024
%8 June
%I Association for Computational Linguistics
%C Mexico City, Mexico
%F masis-oconnor-2024-earth
%X Geo-entity linking is the task of linking a location mention to the real-world geographic location. In this we explore the challenging task of geo-entity linking for noisy, multilingual social media data. There are few open-source multilingual geo-entity linking tools available and existing ones are often rule-based, which break easily in social media settings, or LLM-based, which are too expensive for large-scale datasets. We present a method which represents real-world locations as averaged embeddings from labeled user-input location names and allows for selective prediction via an interpretable confidence score. We show that our approach improves geo-entity linking on a global and multilingual social media dataset, and discuss progress and problems with evaluating at different geographic granularities.
%R 10.18653/v1/2024.nlpcss-1.7
%U https://aclanthology.org/2024.nlpcss-1.7
%U https://doi.org/10.18653/v1/2024.nlpcss-1.7
%P 86-98
Markdown (Informal)
[Where on Earth Do Users Say They Are?: Geo-Entity Linking for Noisy Multilingual User Input](https://aclanthology.org/2024.nlpcss-1.7) (Masis & O’Connor, NLP+CSS-WS 2024)
ACL