@article{campos-etal-2024-conformal,
title = "Conformal Prediction for Natural Language Processing: A Survey",
author = "Campos, Margarida and
Farinhas, Ant{\'o}nio and
Zerva, Chrysoula and
Figueiredo, M{\'a}rio A. T. and
Martins, Andr{\'e} F. T.",
journal = "Transactions of the Association for Computational Linguistics",
volume = "12",
year = "2024",
address = "Cambridge, MA",
publisher = "MIT Press",
url = "https://aclanthology.org/2024.tacl-1.82/",
doi = "10.1162/tacl_a_00715",
pages = "1497--1516",
abstract = "The rapid proliferation of large language models and natural language processing (NLP) applications creates a crucial need for uncertainty quantification to mitigate risks such as Hallucinations and to enhance decision-making reliability in critical applications. Conformal prediction is emerging as a theoretically sound and practically useful framework, combining flexibility with strong statistical guarantees. Its model-agnostic and distribution-free nature makes it particularly promising to address the current shortcomings of NLP systems that stem from the absence of uncertainty quantification. This paper provides a comprehensive survey of conformal prediction techniques, their guarantees, and existing applications in NLP, pointing to directions for future research and open challenges."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="campos-etal-2024-conformal">
<titleInfo>
<title>Conformal Prediction for Natural Language Processing: A Survey</title>
</titleInfo>
<name type="personal">
<namePart type="given">Margarida</namePart>
<namePart type="family">Campos</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">António</namePart>
<namePart type="family">Farinhas</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chrysoula</namePart>
<namePart type="family">Zerva</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mário</namePart>
<namePart type="given">A</namePart>
<namePart type="given">T</namePart>
<namePart type="family">Figueiredo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">André</namePart>
<namePart type="given">F</namePart>
<namePart type="given">T</namePart>
<namePart type="family">Martins</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<genre authority="bibutilsgt">journal article</genre>
<relatedItem type="host">
<titleInfo>
<title>Transactions of the Association for Computational Linguistics</title>
</titleInfo>
<originInfo>
<issuance>continuing</issuance>
<publisher>MIT Press</publisher>
<place>
<placeTerm type="text">Cambridge, MA</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">periodical</genre>
<genre authority="bibutilsgt">academic journal</genre>
</relatedItem>
<abstract>The rapid proliferation of large language models and natural language processing (NLP) applications creates a crucial need for uncertainty quantification to mitigate risks such as Hallucinations and to enhance decision-making reliability in critical applications. Conformal prediction is emerging as a theoretically sound and practically useful framework, combining flexibility with strong statistical guarantees. Its model-agnostic and distribution-free nature makes it particularly promising to address the current shortcomings of NLP systems that stem from the absence of uncertainty quantification. This paper provides a comprehensive survey of conformal prediction techniques, their guarantees, and existing applications in NLP, pointing to directions for future research and open challenges.</abstract>
<identifier type="citekey">campos-etal-2024-conformal</identifier>
<identifier type="doi">10.1162/tacl_a_00715</identifier>
<location>
<url>https://aclanthology.org/2024.tacl-1.82/</url>
</location>
<part>
<date>2024</date>
<detail type="volume"><number>12</number></detail>
<extent unit="page">
<start>1497</start>
<end>1516</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Journal Article
%T Conformal Prediction for Natural Language Processing: A Survey
%A Campos, Margarida
%A Farinhas, António
%A Zerva, Chrysoula
%A Figueiredo, Mário A. T.
%A Martins, André F. T.
%J Transactions of the Association for Computational Linguistics
%D 2024
%V 12
%I MIT Press
%C Cambridge, MA
%F campos-etal-2024-conformal
%X The rapid proliferation of large language models and natural language processing (NLP) applications creates a crucial need for uncertainty quantification to mitigate risks such as Hallucinations and to enhance decision-making reliability in critical applications. Conformal prediction is emerging as a theoretically sound and practically useful framework, combining flexibility with strong statistical guarantees. Its model-agnostic and distribution-free nature makes it particularly promising to address the current shortcomings of NLP systems that stem from the absence of uncertainty quantification. This paper provides a comprehensive survey of conformal prediction techniques, their guarantees, and existing applications in NLP, pointing to directions for future research and open challenges.
%R 10.1162/tacl_a_00715
%U https://aclanthology.org/2024.tacl-1.82/
%U https://doi.org/10.1162/tacl_a_00715
%P 1497-1516
Markdown (Informal)
[Conformal Prediction for Natural Language Processing: A Survey](https://aclanthology.org/2024.tacl-1.82/) (Campos et al., TACL 2024)
ACL