@inproceedings{zeng-etal-2018-multi,
title = "Multi-Domain Neural Machine Translation with Word-Level Domain Context Discrimination",
author = "Zeng, Jiali and
Su, Jinsong and
Wen, Huating and
Liu, Yang and
Xie, Jun and
Yin, Yongjing and
Zhao, Jianqiang",
editor = "Riloff, Ellen and
Chiang, David and
Hockenmaier, Julia and
Tsujii, Jun{'}ichi",
booktitle = "Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing",
month = oct # "-" # nov,
year = "2018",
address = "Brussels, Belgium",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/D18-1041",
doi = "10.18653/v1/D18-1041",
pages = "447--457",
abstract = "With great practical value, the study of Multi-domain Neural Machine Translation (NMT) mainly focuses on using mixed-domain parallel sentences to construct a unified model that allows translation to switch between different domains. Intuitively, words in a sentence are related to its domain to varying degrees, so that they will exert disparate impacts on the multi-domain NMT modeling. Based on this intuition, in this paper, we devote to distinguishing and exploiting word-level domain contexts for multi-domain NMT. To this end, we jointly model NMT with monolingual attention-based domain classification tasks and improve NMT as follows: 1) Based on the sentence representations produced by a domain classifier and an adversarial domain classifier, we generate two gating vectors and use them to construct domain-specific and domain-shared annotations, for later translation predictions via different attention models; 2) We utilize the attention weights derived from target-side domain classifier to adjust the weights of target words in the training objective, enabling domain-related words to have greater impacts during model training. Experimental results on Chinese-English and English-French multi-domain translation tasks demonstrate the effectiveness of the proposed model. Source codes of this paper are available on Github \url{https://github.com/DeepLearnXMU/WDCNMT}.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="zeng-etal-2018-multi">
<titleInfo>
<title>Multi-Domain Neural Machine Translation with Word-Level Domain Context Discrimination</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jiali</namePart>
<namePart type="family">Zeng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jinsong</namePart>
<namePart type="family">Su</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Huating</namePart>
<namePart type="family">Wen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yang</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jun</namePart>
<namePart type="family">Xie</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yongjing</namePart>
<namePart type="family">Yin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jianqiang</namePart>
<namePart type="family">Zhao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-oct-nov</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ellen</namePart>
<namePart type="family">Riloff</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">David</namePart>
<namePart type="family">Chiang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Julia</namePart>
<namePart type="family">Hockenmaier</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jun’ichi</namePart>
<namePart type="family">Tsujii</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Brussels, Belgium</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>With great practical value, the study of Multi-domain Neural Machine Translation (NMT) mainly focuses on using mixed-domain parallel sentences to construct a unified model that allows translation to switch between different domains. Intuitively, words in a sentence are related to its domain to varying degrees, so that they will exert disparate impacts on the multi-domain NMT modeling. Based on this intuition, in this paper, we devote to distinguishing and exploiting word-level domain contexts for multi-domain NMT. To this end, we jointly model NMT with monolingual attention-based domain classification tasks and improve NMT as follows: 1) Based on the sentence representations produced by a domain classifier and an adversarial domain classifier, we generate two gating vectors and use them to construct domain-specific and domain-shared annotations, for later translation predictions via different attention models; 2) We utilize the attention weights derived from target-side domain classifier to adjust the weights of target words in the training objective, enabling domain-related words to have greater impacts during model training. Experimental results on Chinese-English and English-French multi-domain translation tasks demonstrate the effectiveness of the proposed model. Source codes of this paper are available on Github https://github.com/DeepLearnXMU/WDCNMT.</abstract>
<identifier type="citekey">zeng-etal-2018-multi</identifier>
<identifier type="doi">10.18653/v1/D18-1041</identifier>
<location>
<url>https://aclanthology.org/D18-1041</url>
</location>
<part>
<date>2018-oct-nov</date>
<extent unit="page">
<start>447</start>
<end>457</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Multi-Domain Neural Machine Translation with Word-Level Domain Context Discrimination
%A Zeng, Jiali
%A Su, Jinsong
%A Wen, Huating
%A Liu, Yang
%A Xie, Jun
%A Yin, Yongjing
%A Zhao, Jianqiang
%Y Riloff, Ellen
%Y Chiang, David
%Y Hockenmaier, Julia
%Y Tsujii, Jun’ichi
%S Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing
%D 2018
%8 oct nov
%I Association for Computational Linguistics
%C Brussels, Belgium
%F zeng-etal-2018-multi
%X With great practical value, the study of Multi-domain Neural Machine Translation (NMT) mainly focuses on using mixed-domain parallel sentences to construct a unified model that allows translation to switch between different domains. Intuitively, words in a sentence are related to its domain to varying degrees, so that they will exert disparate impacts on the multi-domain NMT modeling. Based on this intuition, in this paper, we devote to distinguishing and exploiting word-level domain contexts for multi-domain NMT. To this end, we jointly model NMT with monolingual attention-based domain classification tasks and improve NMT as follows: 1) Based on the sentence representations produced by a domain classifier and an adversarial domain classifier, we generate two gating vectors and use them to construct domain-specific and domain-shared annotations, for later translation predictions via different attention models; 2) We utilize the attention weights derived from target-side domain classifier to adjust the weights of target words in the training objective, enabling domain-related words to have greater impacts during model training. Experimental results on Chinese-English and English-French multi-domain translation tasks demonstrate the effectiveness of the proposed model. Source codes of this paper are available on Github https://github.com/DeepLearnXMU/WDCNMT.
%R 10.18653/v1/D18-1041
%U https://aclanthology.org/D18-1041
%U https://doi.org/10.18653/v1/D18-1041
%P 447-457
Markdown (Informal)
[Multi-Domain Neural Machine Translation with Word-Level Domain Context Discrimination](https://aclanthology.org/D18-1041) (Zeng et al., EMNLP 2018)
ACL