@inproceedings{ryu-etal-2018-domain,
    title = "Out-of-domain Detection based on Generative Adversarial Network",
    author = "Ryu, Seonghan  and
      Koo, Sangjun  and
      Yu, Hwanjo  and
      Lee, Gary Geunbae",
    editor = "Riloff, Ellen  and
      Chiang, David  and
      Hockenmaier, Julia  and
      Tsujii, Jun{'}ichi",
    booktitle = "Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing",
    month = oct # "-" # nov,
    year = "2018",
    address = "Brussels, Belgium",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/D18-1077/",
    doi = "10.18653/v1/D18-1077",
    pages = "714--718",
    abstract = "The main goal of this paper is to develop out-of-domain (OOD) detection for dialog systems. We propose to use only in-domain (IND) sentences to build a generative adversarial network (GAN) of which the discriminator generates low scores for OOD sentences. To improve basic GANs, we apply feature matching loss in the discriminator, use domain-category analysis as an additional task in the discriminator, and remove the biases in the generator. Thereby, we reduce the huge effort of collecting OOD sentences for training OOD detection. For evaluation, we experimented OOD detection on a multi-domain dialog system. The experimental results showed the proposed method was most accurate compared to the existing methods."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="ryu-etal-2018-domain">
    <titleInfo>
        <title>Out-of-domain Detection based on Generative Adversarial Network</title>
    </titleInfo>
    <name type="personal">
        <namePart type="given">Seonghan</namePart>
        <namePart type="family">Ryu</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Sangjun</namePart>
        <namePart type="family">Koo</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Hwanjo</namePart>
        <namePart type="family">Yu</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Gary</namePart>
        <namePart type="given">Geunbae</namePart>
        <namePart type="family">Lee</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <originInfo>
        <dateIssued>2018-oct-nov</dateIssued>
    </originInfo>
    <typeOfResource>text</typeOfResource>
    <relatedItem type="host">
        <titleInfo>
            <title>Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing</title>
        </titleInfo>
        <name type="personal">
            <namePart type="given">Ellen</namePart>
            <namePart type="family">Riloff</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">David</namePart>
            <namePart type="family">Chiang</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Julia</namePart>
            <namePart type="family">Hockenmaier</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Jun’ichi</namePart>
            <namePart type="family">Tsujii</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <originInfo>
            <publisher>Association for Computational Linguistics</publisher>
            <place>
                <placeTerm type="text">Brussels, Belgium</placeTerm>
            </place>
        </originInfo>
        <genre authority="marcgt">conference publication</genre>
    </relatedItem>
    <abstract>The main goal of this paper is to develop out-of-domain (OOD) detection for dialog systems. We propose to use only in-domain (IND) sentences to build a generative adversarial network (GAN) of which the discriminator generates low scores for OOD sentences. To improve basic GANs, we apply feature matching loss in the discriminator, use domain-category analysis as an additional task in the discriminator, and remove the biases in the generator. Thereby, we reduce the huge effort of collecting OOD sentences for training OOD detection. For evaluation, we experimented OOD detection on a multi-domain dialog system. The experimental results showed the proposed method was most accurate compared to the existing methods.</abstract>
    <identifier type="citekey">ryu-etal-2018-domain</identifier>
    <identifier type="doi">10.18653/v1/D18-1077</identifier>
    <location>
        <url>https://aclanthology.org/D18-1077/</url>
    </location>
    <part>
        <date>2018-oct-nov</date>
        <extent unit="page">
            <start>714</start>
            <end>718</end>
        </extent>
    </part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Out-of-domain Detection based on Generative Adversarial Network
%A Ryu, Seonghan
%A Koo, Sangjun
%A Yu, Hwanjo
%A Lee, Gary Geunbae
%Y Riloff, Ellen
%Y Chiang, David
%Y Hockenmaier, Julia
%Y Tsujii, Jun’ichi
%S Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing
%D 2018
%8 oct nov
%I Association for Computational Linguistics
%C Brussels, Belgium
%F ryu-etal-2018-domain
%X The main goal of this paper is to develop out-of-domain (OOD) detection for dialog systems. We propose to use only in-domain (IND) sentences to build a generative adversarial network (GAN) of which the discriminator generates low scores for OOD sentences. To improve basic GANs, we apply feature matching loss in the discriminator, use domain-category analysis as an additional task in the discriminator, and remove the biases in the generator. Thereby, we reduce the huge effort of collecting OOD sentences for training OOD detection. For evaluation, we experimented OOD detection on a multi-domain dialog system. The experimental results showed the proposed method was most accurate compared to the existing methods.
%R 10.18653/v1/D18-1077
%U https://aclanthology.org/D18-1077/
%U https://doi.org/10.18653/v1/D18-1077
%P 714-718
Markdown (Informal)
[Out-of-domain Detection based on Generative Adversarial Network](https://aclanthology.org/D18-1077/) (Ryu et al., EMNLP 2018)
ACL