@inproceedings{lund-etal-2018-labeled,
    title = "Labeled Anchors and a Scalable, Transparent, and Interactive Classifier",
    author = "Lund, Jeffrey  and
      Cowley, Stephen  and
      Fearn, Wilson  and
      Hales, Emily  and
      Seppi, Kevin",
    editor = "Riloff, Ellen  and
      Chiang, David  and
      Hockenmaier, Julia  and
      Tsujii, Jun{'}ichi",
    booktitle = "Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing",
    month = oct # "-" # nov,
    year = "2018",
    address = "Brussels, Belgium",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/D18-1095/",
    doi = "10.18653/v1/D18-1095",
    pages = "824--829",
    abstract = "We propose Labeled Anchors, an interactive and supervised topic model based on the anchor words algorithm (Arora et al., 2013). Labeled Anchors is similar to Supervised Anchors (Nguyen et al., 2014) in that it extends the vector-space representation of words to include document labels. However, our formulation also admits a classifier which requires no training beyond inferring topics, which means our approach is also fast enough to be interactive. We run a small user study that demonstrates that untrained users can interactively update topics in order to improve classification accuracy."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="lund-etal-2018-labeled">
    <titleInfo>
        <title>Labeled Anchors and a Scalable, Transparent, and Interactive Classifier</title>
    </titleInfo>
    <name type="personal">
        <namePart type="given">Jeffrey</namePart>
        <namePart type="family">Lund</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Stephen</namePart>
        <namePart type="family">Cowley</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Wilson</namePart>
        <namePart type="family">Fearn</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Emily</namePart>
        <namePart type="family">Hales</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Kevin</namePart>
        <namePart type="family">Seppi</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <originInfo>
        <dateIssued>2018-oct-nov</dateIssued>
    </originInfo>
    <typeOfResource>text</typeOfResource>
    <relatedItem type="host">
        <titleInfo>
            <title>Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing</title>
        </titleInfo>
        <name type="personal">
            <namePart type="given">Ellen</namePart>
            <namePart type="family">Riloff</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">David</namePart>
            <namePart type="family">Chiang</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Julia</namePart>
            <namePart type="family">Hockenmaier</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Jun’ichi</namePart>
            <namePart type="family">Tsujii</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <originInfo>
            <publisher>Association for Computational Linguistics</publisher>
            <place>
                <placeTerm type="text">Brussels, Belgium</placeTerm>
            </place>
        </originInfo>
        <genre authority="marcgt">conference publication</genre>
    </relatedItem>
    <abstract>We propose Labeled Anchors, an interactive and supervised topic model based on the anchor words algorithm (Arora et al., 2013). Labeled Anchors is similar to Supervised Anchors (Nguyen et al., 2014) in that it extends the vector-space representation of words to include document labels. However, our formulation also admits a classifier which requires no training beyond inferring topics, which means our approach is also fast enough to be interactive. We run a small user study that demonstrates that untrained users can interactively update topics in order to improve classification accuracy.</abstract>
    <identifier type="citekey">lund-etal-2018-labeled</identifier>
    <identifier type="doi">10.18653/v1/D18-1095</identifier>
    <location>
        <url>https://aclanthology.org/D18-1095/</url>
    </location>
    <part>
        <date>2018-oct-nov</date>
        <extent unit="page">
            <start>824</start>
            <end>829</end>
        </extent>
    </part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Labeled Anchors and a Scalable, Transparent, and Interactive Classifier
%A Lund, Jeffrey
%A Cowley, Stephen
%A Fearn, Wilson
%A Hales, Emily
%A Seppi, Kevin
%Y Riloff, Ellen
%Y Chiang, David
%Y Hockenmaier, Julia
%Y Tsujii, Jun’ichi
%S Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing
%D 2018
%8 oct nov
%I Association for Computational Linguistics
%C Brussels, Belgium
%F lund-etal-2018-labeled
%X We propose Labeled Anchors, an interactive and supervised topic model based on the anchor words algorithm (Arora et al., 2013). Labeled Anchors is similar to Supervised Anchors (Nguyen et al., 2014) in that it extends the vector-space representation of words to include document labels. However, our formulation also admits a classifier which requires no training beyond inferring topics, which means our approach is also fast enough to be interactive. We run a small user study that demonstrates that untrained users can interactively update topics in order to improve classification accuracy.
%R 10.18653/v1/D18-1095
%U https://aclanthology.org/D18-1095/
%U https://doi.org/10.18653/v1/D18-1095
%P 824-829
Markdown (Informal)
[Labeled Anchors and a Scalable, Transparent, and Interactive Classifier](https://aclanthology.org/D18-1095/) (Lund et al., EMNLP 2018)
ACL