@inproceedings{kambhatla-etal-2018-decipherment,
title = "Decipherment of Substitution Ciphers with Neural Language Models",
author = "Kambhatla, Nishant and
Mansouri Bigvand, Anahita and
Sarkar, Anoop",
editor = "Riloff, Ellen and
Chiang, David and
Hockenmaier, Julia and
Tsujii, Jun{'}ichi",
booktitle = "Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing",
month = oct # "-" # nov,
year = "2018",
address = "Brussels, Belgium",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/D18-1102/",
doi = "10.18653/v1/D18-1102",
pages = "869--874",
abstract = "Decipherment of homophonic substitution ciphers using language models is a well-studied task in NLP. Previous work in this topic scores short local spans of possible plaintext decipherments using n-gram language models. The most widely used technique is the use of beam search with n-gram language models proposed by Nuhn et al.(2013). We propose a beam search algorithm that scores the entire candidate plaintext at each step of the decipherment using a neural language model. We augment beam search with a novel rest cost estimation that exploits the prediction power of a neural language model. We compare against the state of the art n-gram based methods on many different decipherment tasks. On challenging ciphers such as the Beale cipher we provide significantly better error rates with much smaller beam sizes."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="kambhatla-etal-2018-decipherment">
<titleInfo>
<title>Decipherment of Substitution Ciphers with Neural Language Models</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nishant</namePart>
<namePart type="family">Kambhatla</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Anahita</namePart>
<namePart type="family">Mansouri Bigvand</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Anoop</namePart>
<namePart type="family">Sarkar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-oct-nov</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ellen</namePart>
<namePart type="family">Riloff</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">David</namePart>
<namePart type="family">Chiang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Julia</namePart>
<namePart type="family">Hockenmaier</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jun’ichi</namePart>
<namePart type="family">Tsujii</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Brussels, Belgium</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Decipherment of homophonic substitution ciphers using language models is a well-studied task in NLP. Previous work in this topic scores short local spans of possible plaintext decipherments using n-gram language models. The most widely used technique is the use of beam search with n-gram language models proposed by Nuhn et al.(2013). We propose a beam search algorithm that scores the entire candidate plaintext at each step of the decipherment using a neural language model. We augment beam search with a novel rest cost estimation that exploits the prediction power of a neural language model. We compare against the state of the art n-gram based methods on many different decipherment tasks. On challenging ciphers such as the Beale cipher we provide significantly better error rates with much smaller beam sizes.</abstract>
<identifier type="citekey">kambhatla-etal-2018-decipherment</identifier>
<identifier type="doi">10.18653/v1/D18-1102</identifier>
<location>
<url>https://aclanthology.org/D18-1102/</url>
</location>
<part>
<date>2018-oct-nov</date>
<extent unit="page">
<start>869</start>
<end>874</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Decipherment of Substitution Ciphers with Neural Language Models
%A Kambhatla, Nishant
%A Mansouri Bigvand, Anahita
%A Sarkar, Anoop
%Y Riloff, Ellen
%Y Chiang, David
%Y Hockenmaier, Julia
%Y Tsujii, Jun’ichi
%S Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing
%D 2018
%8 oct nov
%I Association for Computational Linguistics
%C Brussels, Belgium
%F kambhatla-etal-2018-decipherment
%X Decipherment of homophonic substitution ciphers using language models is a well-studied task in NLP. Previous work in this topic scores short local spans of possible plaintext decipherments using n-gram language models. The most widely used technique is the use of beam search with n-gram language models proposed by Nuhn et al.(2013). We propose a beam search algorithm that scores the entire candidate plaintext at each step of the decipherment using a neural language model. We augment beam search with a novel rest cost estimation that exploits the prediction power of a neural language model. We compare against the state of the art n-gram based methods on many different decipherment tasks. On challenging ciphers such as the Beale cipher we provide significantly better error rates with much smaller beam sizes.
%R 10.18653/v1/D18-1102
%U https://aclanthology.org/D18-1102/
%U https://doi.org/10.18653/v1/D18-1102
%P 869-874
Markdown (Informal)
[Decipherment of Substitution Ciphers with Neural Language Models](https://aclanthology.org/D18-1102/) (Kambhatla et al., EMNLP 2018)
ACL