@inproceedings{li-etal-2018-tell,
    title = "Tell-and-Answer: Towards Explainable Visual Question Answering using Attributes and Captions",
    author = "Li, Qing  and
      Fu, Jianlong  and
      Yu, Dongfei  and
      Mei, Tao  and
      Luo, Jiebo",
    editor = "Riloff, Ellen  and
      Chiang, David  and
      Hockenmaier, Julia  and
      Tsujii, Jun{'}ichi",
    booktitle = "Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing",
    month = oct # "-" # nov,
    year = "2018",
    address = "Brussels, Belgium",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/D18-1164/",
    doi = "10.18653/v1/D18-1164",
    pages = "1338--1346",
    abstract = "In Visual Question Answering, most existing approaches adopt the pipeline of representing an image via pre-trained CNNs, and then using the uninterpretable CNN features in conjunction with the question to predict the answer. Although such end-to-end models might report promising performance, they rarely provide any insight, apart from the answer, into the VQA process. In this work, we propose to break up the end-to-end VQA into two steps: explaining and reasoning, in an attempt towards a more explainable VQA by shedding light on the intermediate results between these two steps. To that end, we first extract attributes and generate descriptions as explanations for an image. Next, a reasoning module utilizes these explanations in place of the image to infer an answer. The advantages of such a breakdown include: (1) the attributes and captions can reflect what the system extracts from the image, thus can provide some insights for the predicted answer; (2) these intermediate results can help identify the inabilities of the image understanding or the answer inference part when the predicted answer is wrong. We conduct extensive experiments on a popular VQA dataset and our system achieves comparable performance with the baselines, yet with added benefits of explanability and the inherent ability to further improve with higher quality explanations."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="li-etal-2018-tell">
    <titleInfo>
        <title>Tell-and-Answer: Towards Explainable Visual Question Answering using Attributes and Captions</title>
    </titleInfo>
    <name type="personal">
        <namePart type="given">Qing</namePart>
        <namePart type="family">Li</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Jianlong</namePart>
        <namePart type="family">Fu</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Dongfei</namePart>
        <namePart type="family">Yu</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Tao</namePart>
        <namePart type="family">Mei</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Jiebo</namePart>
        <namePart type="family">Luo</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <originInfo>
        <dateIssued>2018-oct-nov</dateIssued>
    </originInfo>
    <typeOfResource>text</typeOfResource>
    <relatedItem type="host">
        <titleInfo>
            <title>Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing</title>
        </titleInfo>
        <name type="personal">
            <namePart type="given">Ellen</namePart>
            <namePart type="family">Riloff</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">David</namePart>
            <namePart type="family">Chiang</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Julia</namePart>
            <namePart type="family">Hockenmaier</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Jun’ichi</namePart>
            <namePart type="family">Tsujii</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <originInfo>
            <publisher>Association for Computational Linguistics</publisher>
            <place>
                <placeTerm type="text">Brussels, Belgium</placeTerm>
            </place>
        </originInfo>
        <genre authority="marcgt">conference publication</genre>
    </relatedItem>
    <abstract>In Visual Question Answering, most existing approaches adopt the pipeline of representing an image via pre-trained CNNs, and then using the uninterpretable CNN features in conjunction with the question to predict the answer. Although such end-to-end models might report promising performance, they rarely provide any insight, apart from the answer, into the VQA process. In this work, we propose to break up the end-to-end VQA into two steps: explaining and reasoning, in an attempt towards a more explainable VQA by shedding light on the intermediate results between these two steps. To that end, we first extract attributes and generate descriptions as explanations for an image. Next, a reasoning module utilizes these explanations in place of the image to infer an answer. The advantages of such a breakdown include: (1) the attributes and captions can reflect what the system extracts from the image, thus can provide some insights for the predicted answer; (2) these intermediate results can help identify the inabilities of the image understanding or the answer inference part when the predicted answer is wrong. We conduct extensive experiments on a popular VQA dataset and our system achieves comparable performance with the baselines, yet with added benefits of explanability and the inherent ability to further improve with higher quality explanations.</abstract>
    <identifier type="citekey">li-etal-2018-tell</identifier>
    <identifier type="doi">10.18653/v1/D18-1164</identifier>
    <location>
        <url>https://aclanthology.org/D18-1164/</url>
    </location>
    <part>
        <date>2018-oct-nov</date>
        <extent unit="page">
            <start>1338</start>
            <end>1346</end>
        </extent>
    </part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Tell-and-Answer: Towards Explainable Visual Question Answering using Attributes and Captions
%A Li, Qing
%A Fu, Jianlong
%A Yu, Dongfei
%A Mei, Tao
%A Luo, Jiebo
%Y Riloff, Ellen
%Y Chiang, David
%Y Hockenmaier, Julia
%Y Tsujii, Jun’ichi
%S Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing
%D 2018
%8 oct nov
%I Association for Computational Linguistics
%C Brussels, Belgium
%F li-etal-2018-tell
%X In Visual Question Answering, most existing approaches adopt the pipeline of representing an image via pre-trained CNNs, and then using the uninterpretable CNN features in conjunction with the question to predict the answer. Although such end-to-end models might report promising performance, they rarely provide any insight, apart from the answer, into the VQA process. In this work, we propose to break up the end-to-end VQA into two steps: explaining and reasoning, in an attempt towards a more explainable VQA by shedding light on the intermediate results between these two steps. To that end, we first extract attributes and generate descriptions as explanations for an image. Next, a reasoning module utilizes these explanations in place of the image to infer an answer. The advantages of such a breakdown include: (1) the attributes and captions can reflect what the system extracts from the image, thus can provide some insights for the predicted answer; (2) these intermediate results can help identify the inabilities of the image understanding or the answer inference part when the predicted answer is wrong. We conduct extensive experiments on a popular VQA dataset and our system achieves comparable performance with the baselines, yet with added benefits of explanability and the inherent ability to further improve with higher quality explanations.
%R 10.18653/v1/D18-1164
%U https://aclanthology.org/D18-1164/
%U https://doi.org/10.18653/v1/D18-1164
%P 1338-1346
Markdown (Informal)
[Tell-and-Answer: Towards Explainable Visual Question Answering using Attributes and Captions](https://aclanthology.org/D18-1164/) (Li et al., EMNLP 2018)
ACL