Learning Neural Representation for CLIR with Adversarial Framework

Bo Li, Ping Cheng


Abstract
The existing studies in cross-language information retrieval (CLIR) mostly rely on general text representation models (e.g., vector space model or latent semantic analysis). These models are not optimized for the target retrieval task. In this paper, we follow the success of neural representation in natural language processing (NLP) and develop a novel text representation model based on adversarial learning, which seeks a task-specific embedding space for CLIR. Adversarial learning is implemented as an interplay between the generator process and the discriminator process. In order to adapt adversarial learning to CLIR, we design three constraints to direct representation learning, which are (1) a matching constraint capturing essential characteristics of cross-language ranking, (2) a translation constraint bridging language gaps, and (3) an adversarial constraint forcing both language and media invariant to be reached more efficiently and effectively. Through the joint exploitation of these constraints in an adversarial manner, the underlying cross-language semantics relevant to retrieval tasks are better preserved in the embedding space. Standard CLIR experiments show that our model significantly outperforms state-of-the-art continuous space models and is better than the strong machine translation baseline.
Anthology ID:
D18-1212
Volume:
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing
Month:
October-November
Year:
2018
Address:
Brussels, Belgium
Editors:
Ellen Riloff, David Chiang, Julia Hockenmaier, Jun’ichi Tsujii
Venue:
EMNLP
SIG:
SIGDAT
Publisher:
Association for Computational Linguistics
Note:
Pages:
1861–1870
Language:
URL:
https://aclanthology.org/D18-1212/
DOI:
10.18653/v1/D18-1212
Bibkey:
Cite (ACL):
Bo Li and Ping Cheng. 2018. Learning Neural Representation for CLIR with Adversarial Framework. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pages 1861–1870, Brussels, Belgium. Association for Computational Linguistics.
Cite (Informal):
Learning Neural Representation for CLIR with Adversarial Framework (Li & Cheng, EMNLP 2018)
Copy Citation:
PDF:
https://aclanthology.org/D18-1212.pdf
Video:
 https://aclanthology.org/D18-1212.mp4