@inproceedings{zhao-etal-2018-integrating,
title = "Integrating Transformer and Paraphrase Rules for Sentence Simplification",
author = "Zhao, Sanqiang and
Meng, Rui and
He, Daqing and
Saptono, Andi and
Parmanto, Bambang",
editor = "Riloff, Ellen and
Chiang, David and
Hockenmaier, Julia and
Tsujii, Jun{'}ichi",
booktitle = "Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing",
month = oct # "-" # nov,
year = "2018",
address = "Brussels, Belgium",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/D18-1355",
doi = "10.18653/v1/D18-1355",
pages = "3164--3173",
abstract = "Sentence simplification aims to reduce the complexity of a sentence while retaining its original meaning. Current models for sentence simplification adopted ideas from machine translation studies and implicitly learned simplification mapping rules from normal-simple sentence pairs. In this paper, we explore a novel model based on a multi-layer and multi-head attention architecture and we propose two innovative approaches to integrate the Simple PPDB (A Paraphrase Database for Simplification), an external paraphrase knowledge base for simplification that covers a wide range of real-world simplification rules. The experiments show that the integration provides two major benefits: (1) the integrated model outperforms multiple state-of-the-art baseline models for sentence simplification in the literature (2) through analysis of the rule utilization, the model seeks to select more accurate simplification rules. The code and models used in the paper are available at \url{https://github.com/Sanqiang/text_simplification}.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="zhao-etal-2018-integrating">
<titleInfo>
<title>Integrating Transformer and Paraphrase Rules for Sentence Simplification</title>
</titleInfo>
<name type="personal">
<namePart type="given">Sanqiang</namePart>
<namePart type="family">Zhao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rui</namePart>
<namePart type="family">Meng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Daqing</namePart>
<namePart type="family">He</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Andi</namePart>
<namePart type="family">Saptono</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bambang</namePart>
<namePart type="family">Parmanto</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-oct-nov</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ellen</namePart>
<namePart type="family">Riloff</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">David</namePart>
<namePart type="family">Chiang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Julia</namePart>
<namePart type="family">Hockenmaier</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jun’ichi</namePart>
<namePart type="family">Tsujii</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Brussels, Belgium</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Sentence simplification aims to reduce the complexity of a sentence while retaining its original meaning. Current models for sentence simplification adopted ideas from machine translation studies and implicitly learned simplification mapping rules from normal-simple sentence pairs. In this paper, we explore a novel model based on a multi-layer and multi-head attention architecture and we propose two innovative approaches to integrate the Simple PPDB (A Paraphrase Database for Simplification), an external paraphrase knowledge base for simplification that covers a wide range of real-world simplification rules. The experiments show that the integration provides two major benefits: (1) the integrated model outperforms multiple state-of-the-art baseline models for sentence simplification in the literature (2) through analysis of the rule utilization, the model seeks to select more accurate simplification rules. The code and models used in the paper are available at https://github.com/Sanqiang/text_simplification.</abstract>
<identifier type="citekey">zhao-etal-2018-integrating</identifier>
<identifier type="doi">10.18653/v1/D18-1355</identifier>
<location>
<url>https://aclanthology.org/D18-1355</url>
</location>
<part>
<date>2018-oct-nov</date>
<extent unit="page">
<start>3164</start>
<end>3173</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Integrating Transformer and Paraphrase Rules for Sentence Simplification
%A Zhao, Sanqiang
%A Meng, Rui
%A He, Daqing
%A Saptono, Andi
%A Parmanto, Bambang
%Y Riloff, Ellen
%Y Chiang, David
%Y Hockenmaier, Julia
%Y Tsujii, Jun’ichi
%S Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing
%D 2018
%8 oct nov
%I Association for Computational Linguistics
%C Brussels, Belgium
%F zhao-etal-2018-integrating
%X Sentence simplification aims to reduce the complexity of a sentence while retaining its original meaning. Current models for sentence simplification adopted ideas from machine translation studies and implicitly learned simplification mapping rules from normal-simple sentence pairs. In this paper, we explore a novel model based on a multi-layer and multi-head attention architecture and we propose two innovative approaches to integrate the Simple PPDB (A Paraphrase Database for Simplification), an external paraphrase knowledge base for simplification that covers a wide range of real-world simplification rules. The experiments show that the integration provides two major benefits: (1) the integrated model outperforms multiple state-of-the-art baseline models for sentence simplification in the literature (2) through analysis of the rule utilization, the model seeks to select more accurate simplification rules. The code and models used in the paper are available at https://github.com/Sanqiang/text_simplification.
%R 10.18653/v1/D18-1355
%U https://aclanthology.org/D18-1355
%U https://doi.org/10.18653/v1/D18-1355
%P 3164-3173
Markdown (Informal)
[Integrating Transformer and Paraphrase Rules for Sentence Simplification](https://aclanthology.org/D18-1355) (Zhao et al., EMNLP 2018)
ACL