@inproceedings{shao-etal-2018-greedy,
title = "Greedy Search with Probabilistic N-gram Matching for Neural Machine Translation",
author = "Shao, Chenze and
Chen, Xilin and
Feng, Yang",
editor = "Riloff, Ellen and
Chiang, David and
Hockenmaier, Julia and
Tsujii, Jun{'}ichi",
booktitle = "Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing",
month = oct # "-" # nov,
year = "2018",
address = "Brussels, Belgium",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/D18-1510/",
doi = "10.18653/v1/D18-1510",
pages = "4778--4784",
abstract = "Neural machine translation (NMT) models are usually trained with the word-level loss using the teacher forcing algorithm, which not only evaluates the translation improperly but also suffers from exposure bias. Sequence-level training under the reinforcement framework can mitigate the problems of the word-level loss, but its performance is unstable due to the high variance of the gradient estimation. On these grounds, we present a method with a differentiable sequence-level training objective based on probabilistic n-gram matching which can avoid the reinforcement framework. In addition, this method performs greedy search in the training which uses the predicted words as context just as at inference to alleviate the problem of exposure bias. Experiment results on the NIST Chinese-to-English translation tasks show that our method significantly outperforms the reinforcement-based algorithms and achieves an improvement of 1.5 BLEU points on average over a strong baseline system."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="shao-etal-2018-greedy">
<titleInfo>
<title>Greedy Search with Probabilistic N-gram Matching for Neural Machine Translation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Chenze</namePart>
<namePart type="family">Shao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xilin</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yang</namePart>
<namePart type="family">Feng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-oct-nov</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ellen</namePart>
<namePart type="family">Riloff</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">David</namePart>
<namePart type="family">Chiang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Julia</namePart>
<namePart type="family">Hockenmaier</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jun’ichi</namePart>
<namePart type="family">Tsujii</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Brussels, Belgium</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Neural machine translation (NMT) models are usually trained with the word-level loss using the teacher forcing algorithm, which not only evaluates the translation improperly but also suffers from exposure bias. Sequence-level training under the reinforcement framework can mitigate the problems of the word-level loss, but its performance is unstable due to the high variance of the gradient estimation. On these grounds, we present a method with a differentiable sequence-level training objective based on probabilistic n-gram matching which can avoid the reinforcement framework. In addition, this method performs greedy search in the training which uses the predicted words as context just as at inference to alleviate the problem of exposure bias. Experiment results on the NIST Chinese-to-English translation tasks show that our method significantly outperforms the reinforcement-based algorithms and achieves an improvement of 1.5 BLEU points on average over a strong baseline system.</abstract>
<identifier type="citekey">shao-etal-2018-greedy</identifier>
<identifier type="doi">10.18653/v1/D18-1510</identifier>
<location>
<url>https://aclanthology.org/D18-1510/</url>
</location>
<part>
<date>2018-oct-nov</date>
<extent unit="page">
<start>4778</start>
<end>4784</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Greedy Search with Probabilistic N-gram Matching for Neural Machine Translation
%A Shao, Chenze
%A Chen, Xilin
%A Feng, Yang
%Y Riloff, Ellen
%Y Chiang, David
%Y Hockenmaier, Julia
%Y Tsujii, Jun’ichi
%S Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing
%D 2018
%8 oct nov
%I Association for Computational Linguistics
%C Brussels, Belgium
%F shao-etal-2018-greedy
%X Neural machine translation (NMT) models are usually trained with the word-level loss using the teacher forcing algorithm, which not only evaluates the translation improperly but also suffers from exposure bias. Sequence-level training under the reinforcement framework can mitigate the problems of the word-level loss, but its performance is unstable due to the high variance of the gradient estimation. On these grounds, we present a method with a differentiable sequence-level training objective based on probabilistic n-gram matching which can avoid the reinforcement framework. In addition, this method performs greedy search in the training which uses the predicted words as context just as at inference to alleviate the problem of exposure bias. Experiment results on the NIST Chinese-to-English translation tasks show that our method significantly outperforms the reinforcement-based algorithms and achieves an improvement of 1.5 BLEU points on average over a strong baseline system.
%R 10.18653/v1/D18-1510
%U https://aclanthology.org/D18-1510/
%U https://doi.org/10.18653/v1/D18-1510
%P 4778-4784
Markdown (Informal)
[Greedy Search with Probabilistic N-gram Matching for Neural Machine Translation](https://aclanthology.org/D18-1510/) (Shao et al., EMNLP 2018)
ACL