@inproceedings{song-etal-2019-using,
title = "Using Customer Service Dialogues for Satisfaction Analysis with Context-Assisted Multiple Instance Learning",
author = "Song, Kaisong and
Bing, Lidong and
Gao, Wei and
Lin, Jun and
Zhao, Lujun and
Wang, Jiancheng and
Sun, Changlong and
Liu, Xiaozhong and
Zhang, Qiong",
editor = "Inui, Kentaro and
Jiang, Jing and
Ng, Vincent and
Wan, Xiaojun",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)",
month = nov,
year = "2019",
address = "Hong Kong, China",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/D19-1019/",
doi = "10.18653/v1/D19-1019",
pages = "198--207",
abstract = "Customers ask questions and customer service staffs answer their questions, which is the basic service model via multi-turn customer service (CS) dialogues on E-commerce platforms. Existing studies fail to provide comprehensive service satisfaction analysis, namely satisfaction polarity classification (e.g., well satisfied, met and unsatisfied) and sentimental utterance identification (e.g., positive, neutral and negative). In this paper, we conduct a pilot study on the task of service satisfaction analysis (SSA) based on multi-turn CS dialogues. We propose an extensible Context-Assisted Multiple Instance Learning (CAMIL) model to predict the sentiments of all the customer utterances and then aggregate those sentiments into service satisfaction polarity. After that, we propose a novel Context Clue Matching Mechanism (CCMM) to enhance the representations of all customer utterances with their matched context clues, i.e., sentiment and reasoning clues. We construct two CS dialogue datasets from a top E-commerce platform. Extensive experimental results are presented and contrasted against a few previous models to demonstrate the efficacy of our model."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="song-etal-2019-using">
<titleInfo>
<title>Using Customer Service Dialogues for Satisfaction Analysis with Context-Assisted Multiple Instance Learning</title>
</titleInfo>
<name type="personal">
<namePart type="given">Kaisong</namePart>
<namePart type="family">Song</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lidong</namePart>
<namePart type="family">Bing</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Wei</namePart>
<namePart type="family">Gao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jun</namePart>
<namePart type="family">Lin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lujun</namePart>
<namePart type="family">Zhao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jiancheng</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Changlong</namePart>
<namePart type="family">Sun</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xiaozhong</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Qiong</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Kentaro</namePart>
<namePart type="family">Inui</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jing</namePart>
<namePart type="family">Jiang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vincent</namePart>
<namePart type="family">Ng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xiaojun</namePart>
<namePart type="family">Wan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Hong Kong, China</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Customers ask questions and customer service staffs answer their questions, which is the basic service model via multi-turn customer service (CS) dialogues on E-commerce platforms. Existing studies fail to provide comprehensive service satisfaction analysis, namely satisfaction polarity classification (e.g., well satisfied, met and unsatisfied) and sentimental utterance identification (e.g., positive, neutral and negative). In this paper, we conduct a pilot study on the task of service satisfaction analysis (SSA) based on multi-turn CS dialogues. We propose an extensible Context-Assisted Multiple Instance Learning (CAMIL) model to predict the sentiments of all the customer utterances and then aggregate those sentiments into service satisfaction polarity. After that, we propose a novel Context Clue Matching Mechanism (CCMM) to enhance the representations of all customer utterances with their matched context clues, i.e., sentiment and reasoning clues. We construct two CS dialogue datasets from a top E-commerce platform. Extensive experimental results are presented and contrasted against a few previous models to demonstrate the efficacy of our model.</abstract>
<identifier type="citekey">song-etal-2019-using</identifier>
<identifier type="doi">10.18653/v1/D19-1019</identifier>
<location>
<url>https://aclanthology.org/D19-1019/</url>
</location>
<part>
<date>2019-11</date>
<extent unit="page">
<start>198</start>
<end>207</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Using Customer Service Dialogues for Satisfaction Analysis with Context-Assisted Multiple Instance Learning
%A Song, Kaisong
%A Bing, Lidong
%A Gao, Wei
%A Lin, Jun
%A Zhao, Lujun
%A Wang, Jiancheng
%A Sun, Changlong
%A Liu, Xiaozhong
%A Zhang, Qiong
%Y Inui, Kentaro
%Y Jiang, Jing
%Y Ng, Vincent
%Y Wan, Xiaojun
%S Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)
%D 2019
%8 November
%I Association for Computational Linguistics
%C Hong Kong, China
%F song-etal-2019-using
%X Customers ask questions and customer service staffs answer their questions, which is the basic service model via multi-turn customer service (CS) dialogues on E-commerce platforms. Existing studies fail to provide comprehensive service satisfaction analysis, namely satisfaction polarity classification (e.g., well satisfied, met and unsatisfied) and sentimental utterance identification (e.g., positive, neutral and negative). In this paper, we conduct a pilot study on the task of service satisfaction analysis (SSA) based on multi-turn CS dialogues. We propose an extensible Context-Assisted Multiple Instance Learning (CAMIL) model to predict the sentiments of all the customer utterances and then aggregate those sentiments into service satisfaction polarity. After that, we propose a novel Context Clue Matching Mechanism (CCMM) to enhance the representations of all customer utterances with their matched context clues, i.e., sentiment and reasoning clues. We construct two CS dialogue datasets from a top E-commerce platform. Extensive experimental results are presented and contrasted against a few previous models to demonstrate the efficacy of our model.
%R 10.18653/v1/D19-1019
%U https://aclanthology.org/D19-1019/
%U https://doi.org/10.18653/v1/D19-1019
%P 198-207
Markdown (Informal)
[Using Customer Service Dialogues for Satisfaction Analysis with Context-Assisted Multiple Instance Learning](https://aclanthology.org/D19-1019/) (Song et al., EMNLP-IJCNLP 2019)
ACL
- Kaisong Song, Lidong Bing, Wei Gao, Jun Lin, Lujun Zhao, Jiancheng Wang, Changlong Sun, Xiaozhong Liu, and Qiong Zhang. 2019. Using Customer Service Dialogues for Satisfaction Analysis with Context-Assisted Multiple Instance Learning. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages 198–207, Hong Kong, China. Association for Computational Linguistics.